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This dissertation investigates the dynamic interplay between robotics and human

adaptability in environments characterized by frequent interruptions, with a special

focus on technical education and privacy considerations. Our research begins by ex-

amining the pervasive issue of interruptions in various settings, emphasizing their

impact on productivity and safety. It then explores strategies that leverage technol-

ogy, particularly robotics, to enhance human interruption tolerance and performance.

A significant portion of the research is dedicated to understanding how robotics

can aid individuals with Autism Spectrum Disorders (ASD). This exploration is ex-

tended to broader educational contexts, where robotics are employed to improve

learning outcomes and skill acquisition in technical education. We conduct empiri-

cal studies to validate the model’s effectiveness, focusing on learning outcomes, skill

development, and the productive interaction between robots and human learners.

Additionally, the dissertation addresses the crucial aspects of privacy and eth-

ical design in the deployment of robotics, highlighting the importance of aligning

technological advancements with ethical standards and privacy concerns. Advanced

techniques like differentially private algorithms and maximal information coefficient

analysis are discussed, underscoring their role in maintaining data utility while pro-

tecting individual privacy.



The key contributions of our research include providing broad understanding of the

role of technology, particularly robotics, in enhancing human adaptability in environ-

ments characterized by frequent interruptions; offering insights into the importance of

privacy and ethical design in the development of user-centric robots; presenting evi-

dence of the effectiveness of a robot-driven interactive learning model in various fields

of technical education; and demonstrating the applicability of robot-driven pedagogi-

cal methods beyond specific disciplines, showcasing the versatility of our approach in

various training settings.
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Chapter 1

Introduction

The central research problem of this dissertation revolves around the pervasive issue

of interruptions in contemporary environments. The effects of interruptions often

include errors and delays, potentially resulting in high monetary costs, injury, and

death. For example, interruptions of airline pilots during ground turn-around opera-

tions can result in downstream delays with cascading consequences, leading to losses

ranging between 32.9 billion and 41 billion for airlines, passengers, and society (Gontar

et al., 2017; Ball et al., 2010; Liu et al., 2019). High losses are also prevalent in other

sectors of society. A study from the Journal of Nursing Management indicated that

49% of 38, 063 medication administration errors were attributable to interruptions

(Johnson et al., 2017). Furthermore, medical errors have been estimated to result in

up to 251,000 preventable deaths annually (Pereira-Lima et al., 2019; James, 2013;

Weingart et al., 2000) and account for a significant amount of iatrogenic injury (Jha

et al., 2013), as well as financial losses exceeding billions of dollars annually (Van

Den Bos et al., 2011).

Beyond economic repercussions and safety concerns, interruptions often result in

decreased workplace productivity (Chisholm et al., 2000; Dabbish and Kraut, 2004),
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and may even lead to social isolation, particularly among adults with Autism Spec-

trum Disorders (Orsmond et al., 2013; Mazurek, 2014). The predominant strategy

to mitigate these effects has been to reorganize the work environment to minimize

interruption frequency (Westbrook et al., 2017). Developing the ability to effectively

manage attention between tasks and training for seamless recovery from interruptions

are crucial for all individuals facing such disruptions.

Given that many interruptions are unpredictable and unavoidable, a viable ap-

proach lies in reducing the resulting errors and delays. A notable approach is the

method proposed by Donaldson et al., focusing on error reduction in the American

health system (Donaldson et al., 2000). This method recommends a design process

encompassing “problem simulation training and practice in problem recovery” (Don-

aldson et al., 2000). In environments where tasks are regularly interrupted, training

tailored to specific tasks and their associated interruptions is invaluable (Donaldson

et al., 2000; Ruskin et al., 2021).

While existing methods for managing interruptions show promise, there is room

for additional contributions. This dissertation, drawing upon research in human-robot

co-creativity (Fitzgerald et al., 2017), introduces a model of cooperative engagement

between humans and robots, specifically designed to enhance the management of in-

terruptions in the context of robot-assisted technical training in educational settings.

Our empirical studies delve into the impact of robot-driven interventions on learning

outcomes, skill development, and the estimation of expertise in technical subjects,

emphasizing the dynamic interaction between the robot and its human learner coun-

terparts. This model seeks to validate and emphasize a collaborative framework where
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the integration of technological tools, adaptive robot behaviors, and human insights

strives to exceed the results attainable by the efforts of the robot’s human collabora-

tor alone (Van Dijk et al., 2023). Essentially, it advocates for a specialized approach

that leverages the collaborative dynamics between technology and human learners,

aiming to enrich the learning experience and outcomes.

Our approach, drawing on seminal works in human-robot interaction and col-

laboration, demonstrates the practical applicability of these concepts in educational

settings, especially in technical training (Caterino et al., 2023; Hayes and Scassellati,

2014). Beyond merely deploying advanced tools, this integration involves nurturing

a dynamic relationship between technology and learners.

Furthermore, harmonizing this collaborative interplay with data privacy and eth-

ical considerations introduces additional complexity. It is imperative to ensure that

our solutions are not only effective but also adhere to ethical standards and respect

individual rights and societal norms. Therefore, this dissertation aims to explore and

articulate strategies that capitalize on this collaborative interplay, presenting innova-

tive methods to address the challenges posed by interruptions in the contemporary

world.

This research problem is addressed through a series of interconnected studies, each

contributing to a comprehensive understanding of how to mitigate the disruptive ef-

fects of interruptions. This approach involves an in-depth examination of training

methodologies aimed at improving interruption tolerance. It also encompasses the

development and implementation of robot solutions, specifically tailored for distinct

populations as well as broader demographic groups. Additionally, the research ad-
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dresses critical aspects of privacy and ethical considerations pertinent to the tech-

nological adoption process. The insights derived from these studies are crucial in

formulating effective strategies. These strategies not only leverage advancements in

robotics but also align them with human cognitive and behavioral patterns, thereby

managing interruptions more efficiently.

Foremost among the questions underpinning our research are: Can structured

training methods significantly impact the interruption tolerance of individuals in high-

interruption environments, such as airline ground turn-around operations or digital

workspaces? Furthermore, does such training lead to measurable changes in terms of

time, error rates, and subjective focus levels post-interruption?

Chapter 2 of this dissertation investigates whether pedagogic constructs can en-

hance performance under interruptions. Notably, in the studies described in Chapter

2, robots are not involved. This chapter focuses on assessing the influence of inter-

ruption duration and demands (Monk et al., 2008). Our findings reveal that certain

pedagogical methods lead to improvements in handling interruptions. Specifically, we

discovered that structured training methods, grounded in cognitive and behavioral

principles, significantly enhance individuals’ interruption tolerance. This improve-

ment manifests as quantifiable increases in productivity and decreases in error rates.

Empirical research was conducted to evaluate the effectiveness of these methodologies,

offering a critical analysis of their strengths, limitations, and potential for application.

Our research demonstrates the feasibility of training individuals to manage interrup-

tions through repetitive exposure. Furthermore, we found that improvement is not

hindered by context (Cades et al., 2011), implying that such training methods could
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be effectively applied in human-robot interaction contexts.

In Chapter 3, we explore the potential of social robotics in providing job-relevant

interruptions training for an understudied population: individuals with Autism Spec-

trum Disorders (ASD) (McKenna et al., 2020; Scassellati, 2007). The challenge of

managing interruptions is particularly pronounced for individuals with ASD, given

the social skills deficits many of them exhibit, which can exacerbate the effects of

workplace distractions, unpredictability, and uncertainty (Kenyon, 2015). Address-

ing these specific challenges is not merely an academic pursuit; it holds substantial

real-world significance, impacting the autonomy and quality of life of these individ-

uals (Lindsay et al., 2018; Scott et al., 2017). Our research demonstrates that users

readily accepted the social robot in their homes, perceiving the training it provided as

relevant, useful, and important. Furthermore, they showed improvement in managing

workplace-relevant interruptions.

In Chapter 4, we continue to explore the pervasive nature of interruptions, ex-

tending our focus beyond home environments to include academic settings. Building

upon the insights from Chapter 3, which highlighted the potential of social robotics

in aiding individuals with ASD in managing interruptions at home, Chapter 4 broad-

ens the narrative. It expands the scope to a more diverse population and provides

a detailed examination of the specialized approach previously introduced, evaluat-

ing its applicability in an educational context (Brumby et al., 2013). This chapter

delves into the dynamic interplay between technology and human learners, with a

particular emphasis on the role of the robot in facilitating team-centric collaborative

tasks. These tasks are crafted to enable the robot’s human collaborator to recover
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more seamlessly from interruptions, especially during the performance and learning

of technical tasks.

We assess the effectiveness of approaches wherein the robot uses context-aware

perception and tracks the human’s task status and progression throughout interrup-

tions. Crucially, the robot embeds cues within the environment, anticipating that

these cues will subtly prompt and reorient the human collaborator back into the

workflow (Trafton et al., 2005; Falkland et al., 2020). This nuanced method of inter-

ruption management involves the robot’s capacity to encode essential task details into

environmental cues rather than direct intervention. These strategically placed cues

are designed to offer indirect guidance, assisting the human partner in resuming the

interrupted workflow more intuitively (Falkland, 2023). Our evaluations demonstrate

that robots, by embedding these environmental cues, substantially aid in improving

the management of interruptions. This approach, akin to their impact on specialized

populations, is shown to be significantly beneficial across a broader demographic,

highlighting the robot’s role to not only complement but significantly amplify human

capabilities in managing interruptions.

Our focus progresses by delving into a critical and rapidly evolving domain: tech-

nical education (Venkatraman et al., 2018). In an era where digital technology is

advancing at an unprecedented rate, traditional educational methods are becoming

increasingly insufficient (Sayfullayeva et al., 2021). Chapter 4 also addresses the ur-

gent need for advanced technical education methodologies that effectively bridge the

gap between theoretical knowledge and practical application. This chapter is dedi-

cated to integrating robot-driven interplay into technical education in environments
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characterized by interruptions. The goal is to enhance the effectiveness of techni-

cal education through robot-driven interactive learning. We utilize HVAC system

maintenance and troubleshooting tasks as a benchmark for measuring the impact of

robotics on learning outcomes, skill acquisition, and performance in technical subjects

(Trčka and Hensen, 2010; Afram and Janabi-Sharifi, 2014). Our evaluations demon-

strate that the robot’s capacity to offer adaptive feedback, personalized guidance,

and hands-on troubleshooting support significantly boosts educational effectiveness.

Ultimately, this chapter aims to showcase how this unified approach can open new

pathways for pedagogic innovation in the field of technical education (Van Dijk et al.,

2023; Mayer, 2014).

As we approach the penultimate chapter of this dissertation, we consider the

broader implementation of robotics, addressing the increasing concerns related to

ethics and privacy becomes crucial. Chapter 5 delves into these critical issues, focus-

ing specifically on the factors that influence the adoption of robots, with a special

emphasis on privacy and ethical design (Rueben et al., 2018; Lutz and Tamò-Larrieux,

2021). One of the central endeavors of this chapter is to align the innovative poten-

tial of robotics with stringent privacy and ethical standards (Kaminski et al., 2016).

In this context, we explore the potential incorporation of differentially private al-

gorithms, a cutting-edge technique in the domain of privacy-preserving technology.

Differentially private algorithms are designed to provide a framework for data analysis

that respects individual privacy. They introduce a measure of ‘noise’ to the data or

to the queries made on the data, thereby obscuring individual contributions while not

significantly undermining the accuracy of the analysis. This method allows for the ex-
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traction of valuable insights and the making of informed decisions based on aggregate

information, all while prioritizing the privacy of individual data subjects. By consid-

ering the application of differentially private algorithms in robotic systems, we aim to

navigate a path that balances the utility and effectiveness of data-driven technologies

with robust protections for individual privacy (Schulz and Herstad, 2018).

The dissertation culminates with Chapter 6, which synthesizes insights gleaned

from the preceding chapters to propose advanced pedagogical constructs for technical

education. This chapter demonstrates the impact of robotics on managing inter-

ruptions, user-privacy-centric robot design, and individualized learning approaches.

Chapter 6 elaborates on the contributions, implications, and utility of this research,

while also acknowledging the work that remains to address the limitations of our

study. Our key contributions include:

1. Providing a holistic understanding of how technology, particularly robotics, can

enhance human adaptability in environments characterized by frequent inter-

ruptions.

2. Offering insights into how privacy and ethical considerations can inform the

development of user-centric robots. This emphasizes the importance of user

privacy and ethical design in fostering trust and promoting broader adoption of

robotics.

3. Presenting evidence that a robot-driven interactive learning model, when ap-

plied to various fields of technical education, leads to significant improvements

in learning outcomes and skill acquisition. This offers insights into how adaptive
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and personalized educational technologies can cater to diverse learning styles,

thus contributing to broader theories of differentiated instruction and person-

alized learning.

4. Demonstrating the applicability of robot-driven pedagogical methods beyond

HVAC systems to include disciplines such as Automotive Maintenance, Com-

puter System Building, and more. This encompasses both academic and voca-

tional training settings, illustrating the versatility of our approach.

As outlined in this introduction, the central aim of this dissertation is to explore the

intersection of technology, particularly robotics, with human adaptability in contexts

laden with interruptions, privacy considerations, and technical education challenges.

Traversing a spectrum of environments and populations, ranging from individuals

with Autism Spectrum Disorders to learners in technical education, this research of-

fers comprehensive insights into how robotics can enhance learning and adaptability.

The subsequent chapters will delve into each aspect of this research in greater de-

tail, encompassing empirical studies on interruption management and examining the

ethical implications of robotics in education. This journey not only augments the ex-

isting body of knowledge but also paves the way for practical applications and future

scholarly inquiry.
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Chapter 2

Enhancing Performance Under
Interruptions: An Empirical
Investigation

In the modern workplace, the prevalence of interruptions is a ubiquitous challenge,

presenting a substantial barrier to optimal performance and efficiency. This chapter

seeks to explore the extent to which structured pedagogical constructs can ameliorate

the disruptive effects of interruptions on task performance. Unlike other sections of

this dissertation, Chapter 2 specifically excludes the consideration of robotic agents,

focusing solely on human cognitive processes and the dynamics of interruption, re-

sumption, and task performance error. The primary objective is to assess the influence

of interruption characteristics–specifically, their duration and cognitive demands–on

the efficacy of task resumption (Labonté and Vachon, 2021; Trafton et al., 2005; Monk

et al., 2008; Trafton et al., 2012).

This chapter aims to dissect the effectiveness of various pedagogical methods de-

signed to enhance interruption tolerance. These methods are grounded in cognitive

and behavioral principles and are hypothesized to foster significant improvements in
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handling interruptions (Altmann and Trafton, 2020; Trafton et al., 2003). This is

not only expected to manifest in heightened productivity but also in the reduction of

error rates.

2.1 Background

The propensity for interruptions to engender significant disruptions in workflow is

well-documented (Labonté and Vachon, 2021; Altmann and Trafton, 2020; Trafton

et al., 2003), with implications ranging from diminished productivity (Chisholm et al.,

2000; Dabbish and Kraut, 2004) to escalated error rates and even safety violations

(Pereira-Lima et al., 2019; James, 2013). The cognitive toll of interruptions, par-

ticularly their impact on working memory and attention regulation (Anderson and

Douglass, 2001), necessitates a strategic approach to mitigate these effects. The

current study is predicated on the concept that through structured training and ex-

posure, individuals can develop a heightened tolerance to interruptions. Such training

harnesses cognitive and behavioral principles (Jones and Moss, 2019) to bolster indi-

viduals’ ability to manage interruptions, thereby enhancing overall task performance.

The generalizability of these training effects is a focal point of this investigation.

Traditional belief suggests that skills and strategies developed in one context may not

seamlessly transfer to another (Cades et al., 2011); however, our study challenges this

notion. By demonstrating that improvements in interruption management are not

context-specific, as shown in the significant reduction in resumption lag (Jones and

Moss, 2019), we posit that the strategies and skills honed through our pedagogical
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methods have broad applicability, including but not limited to, scenarios involving

human-robot interactions.

Our approach aligns with the comprehensive framework proposed by Donaldson

et al. (2000), advocating for the implementation of training interventions that simulate

problems and provide opportunities for practicing recovery strategies. This method is

further supported by insights from Cades et al. (2007) and Trafton et al. (2012), who

explored the impact of task types and interruption patterns on task performance and

recovery. The integration of these perspectives informs our training design, ensuring

a methodology that addresses the multifaceted challenges posed by interruptions in

various contexts.

The necessity for strategic, evidence-based training is accentuated when consider-

ing the dynamic and often unpredictable nature of modern work environments. The

increasing reliance on digital tools and the proliferation of multitasking underscore

the urgency of developing methodologies to manage interruptions effectively. As such,

our study not only responds to an immediate practical need but also contributes to

the theoretical understanding of cognitive resilience in the face of interruptions.

The innovative aspect of this research lies in its empirical approach to evaluat-

ing the effectiveness of structured training interventions. By adopting a data-driven

methodology, this study moves beyond theoretical discourse to provide actionable

insights. The empirical evidence generated through this research is a testament to

the potential of structured training to significantly enhance interruption management

capabilities (Jones and Moss, 2019). Moreover, the findings regarding the transfer-

ability of skills across different tasks and contexts provide a promising avenue for
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future research and practical application in diverse fields, ranging from industrial

operations to educational settings and beyond.

In essence, strategies for mitigating the impact of interruptions are varied and

can be broadly categorized into three principal approaches, each suggesting different

mechanisms for enhancing interruption management skills. The first approach posits

that individuals can develop efficient procedural rules or strategies through the re-

peated execution of specific primary-interrupting task pairs (Anderson and Lebiere,

2014). This perspective implies that a comprehensive investigation into how indi-

viduals acquire specific procedural rules would necessitate a diverse and extensive

array of primary-interrupting task pairings, shedding light on task-specific learning

and adaptation.

The second approach advocates that heightened familiarity with the primary task

leads to faster task resumption and improved interruption management (Cades et al.,

2006, 2011). Existing research supports the notion that practicing interruption tasks

enhances interruption tolerance (Cades et al., 2006). However, further exploration is

needed to understand whether this improvement extends to scenarios where primary

tasks and interrupting tasks are practiced both separately and in conjunction with

interruptions, thereby offering a broader perspective on task familiarity and interrup-

tion resilience.

The third approach suggests the possibility of a self-led general learning process,

a concept that has been demonstrated in the context of two similar tasks (Jones

and Moss, 2019). Yet, the extent to which this generalization process applies to two

cognitively distinct tasks remains an open question, hinting at the potential for a
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more universal form of cognitive adaptability in the face of interruptions.

In light of the diverse perspectives offered by existing literature and the gaps iden-

tified in conventional methods for mitigating the effects of interruptions, we propose

three primary inquiries. These inquiries aim to explore the conditions under which

practice-based training yields the most significant reductions in errors and delays

caused by interruptions. By examining the various underlying mechanisms of prac-

tice that contribute to enhanced resilience to interruptions, this research endeavors

to offer a more comprehensive understanding of effective interruption management

strategies.

Our study’s alignment with the comprehensive framework proposed by Donaldson

et al. (2000), combined with the insights from Cades et al. (2007) and Trafton et al.

(2012), positions our research at the intersection of cognitive psychology, workplace

efficiency, and educational methodology. This multidisciplinary approach is reflective

of the complexity of interruption management as a field of study and underscores the

necessity of integrating diverse perspectives to develop effective solutions.

As we advance into the fabric of interruption management strategies, it is im-

perative to recognize the role of individual differences in the effectiveness of training

interventions. The cognitive styles, learning preferences, and adaptability of individ-

uals can significantly influence the outcomes of the training. Future research should

consider these factors to personalize and optimize training interventions for different

individuals and groups.
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2.2 Research Aim and Questions

The primary aim of this study is to empirically evaluate the efficacy of structured

training methods in improving individuals’ resilience and performance in the face of

interruptions. We aim to answer the following pivotal questions:

1. How do structured pedagogical methods sculpt the tolerance to, and manage-

ment of, interruptions in task performance? What are the underlying cognitive

mechanisms influenced by these methods?

2. To what extent do these methods manifest in quantifiable outcomes, specifically

in terms of enhancements in productivity and reductions in error rates? What

metrics best capture these improvements?

3. Are the benefits of such training methods universally applicable, transcend-

ing the boundaries of specific tasks and contexts, or are they confined to the

conditions under which they were developed?

In addressing these questions, this study endeavors to contribute an understanding of

interruption management, providing empirical evidence to support the development

and implementation of effective training strategies.
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2.3 Study Design

Employing a multi-faceted study design, we use a 2 x 2 x 2 x 2 mixed factorial

framework, crafted to unravel the effects of various training conditions on interruption

tolerance. This design framework facilitated a granular analysis, allowing us to isolate

and evaluate the influence of specific variables.

2.3.1 Performance Metrics

We have chosen to employ four primary performance metrics: interruption lag, re-

sumption lag, accuracy, and response speed. These metrics, entrenched in the stan-

dard practices of interruption studies (e.g., Trafton et al. (2005); Altmann and Trafton

(2020)), have been further refined and expanded in our study to offer a multi-

dimensional perspective on training efficacy.

• Resumption Lag: This metric quantifies the time, in seconds, required for

a participant to mentally regroup and resume the primary task following an

interruption. Serving as a direct indicator of the cognitive load imposed by

the interruption, resumption lag is pivotal for evaluating the efficiency of task

resumption strategies.

• Interruption Lag: This metric measures the duration, in seconds, that a

participant takes to address an interruption once it occurs. It is a critical gauge

of a participant’s responsiveness and effectiveness in redirecting their focus from

the primary task to the interrupting task, a skill of paramount importance in

environments where multitasking is the norm.
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• Accuracy: In our pursuit of a comprehensive assessment of interruption man-

agement skills, we sought tasks that could accurately measure distinct cognitive

capabilities. This metric is defined uniquely for each primary task:

– For a task that evaluates strategic problem-solving, we selected an activity

involving the rearrangement of objects according to specific rules. Here,

accuracy is gauged not just by task completion but by the efficiency of the

solution, measured by the number of moves executed beyond the optimal

solution. This measure not only reflects the participant’s ability to plan

and strategize but also their adaptability in adjusting strategies based on

the evolving task requirements.

– For a task that assesses memory retention and recall, we incorporated an

activity that requires participants to remember and reproduce a sequence

of visual information. In this task, accuracy is determined by the correct-

ness of the sequence recalled by the participant. This metric is particularly

insightful as it serves as a testament to the participant’s ability to retain,

process, and reconstruct visual information over short periods, highlighting

their short-term memory and attention to detail.

These tasks were chosen for their ability to elicit and measure key cognitive

skills essential for efficient interruption management, ensuring that our study

could provide an analysis of the training’s impact on these crucial capabilities.

• Response Speed: This metric captures the total time, in seconds, taken by

a participant to complete a task. It is indispensable for assessing the impact
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of interruptions on overall task efficiency and for quantifying enhancements in

task execution speed as an outcome of the training.

These metrics collectively offer an understanding of how training influences partici-

pants’ ability to handle interruptions. By analyzing participants’ performance across

all four metrics, we aim to ascertain the presence and extent of acquired interrup-

tion tolerance skills, thereby providing empirical support for the effectiveness of our

training interventions.

2.3.2 Task Selection

Following the establishment of our performance metrics, we selected tasks that not

only represent common cognitive demands in various work environments but also

allow for precise measurement of our performance metrics.

Primary Tasks:

The Tower of Hanoi: A strategic problem-solving task, the Tower of Hanoi, was chosen

for its relevance to everyday cognitive tasks that require planning and sequential

processing. Its inclusion allows for the exploration of how interruptions can impact

tasks that necessitate a high level of cognitive control and foresight. The Tower of

Hanoi puzzle begins with the discs arranged in a scattered fashion across three pegs.

Despite this initial scattering, the discs maintain a consistent order by size, with

smaller discs atop larger ones. The primary objective of the puzzle is to relocate the

entire stack to the rightmost peg, adhering to the rule that only smaller discs may
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Figure 2.1: In the Tower of Hanoi task, participants are instructed to move discs to create
the goal formation. There are many starting positions but only one goal formation.

be placed on top of larger ones. Each move involves transferring a single disc from

the top of one stack to either an empty peg or on top of a larger disc on another peg,

as illustrated in Figure 2.1. This task is recognized as a low-memory strategy task

analogue (Rudner et al., 2009). It allows participants to adopt a methodical approach

to problem-solving, where the sequence of moves can be adjusted and recalculated

as needed. Interruptions typically impact the performance speed rather than the

accuracy, as the task structure permits participants to pause, reassess, and replan

their strategy upon resumption, thereby preventing errors and unnecessary moves.

Path Recall Task: Focusing on memory and sequence recall, this task represents

activities where continuity and the ordering of actions are crucial. It helps in un-

derstanding the impact of interruptions on tasks that demand a strong reliance on

working memory and the ability to remember and execute a series of steps in a precise

order. The path recall task is designed to assess an individual’s memory and sequence

recall capabilities. In each instance of the task, the participant is presented with a
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Figure 2.2: In the Path Recall Task, participants are instructed to reconstruct the sequence
of paths followed by a line segment in the previous four videos. The images here display the
complete paths, but it is important to note that participants only view a portion of each
path at any given time in the videos. The numbers in the images represent the order in
which the videos appeared, and participants must recall and match this order based on their
memory of the line segments’ movements.

sequence of four short videos. Each video displays a line segment tracing a distinct

path across the screen. The paths vary in their patterns, including a curly path, a

zigzag path, a sine wave path, and an odd-harmonics sine wave path. Crucially, the

videos only reveal a portion of the path at any given time, compelling the participant

to mentally construct and memorize the entire trajectory of the line segment as it

progresses.

The sequence of the videos is randomized for each task question, adding an addi-

tional layer of complexity and ensuring that rote memorization from previous ques-

tions does not aid performance. After viewing the four videos, the participant is then

presented with complete images of the paths, fully traced, corresponding to the paths

undertaken by the line segments in the videos, as illustrated in Figure 2.2.

At this juncture, the participant’s task is to reconstruct the sequence of the videos

based on their memory of the line segments’ movements. They must drag and drop

numbers to correctly assign a position to each completed path, reflecting the order in
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which they appeared in the video sequence. This task not only tests the participant’s

memory for the paths themselves but also their ability to recall the specific sequence

of the paths, a challenge that closely mimics real-life tasks requiring the accurate

recall of sequences and procedures after an interruption.

Interrupting Tasks:

Stroop-like Interference Task: Drawing on the principles of the well-established Stroop

task, known for its utility in measuring cognitive interference and control (Scarpina

and Tagini, 2017), our adapted Stroop-like task is designed to examine the partici-

pant’s ability to manage task performance amidst interference. This involves navigat-

ing between a highly practiced skill (reading) and a simpler, yet less practiced skill

(naming colors). The task aims to provide insights into the participant’s cognitive

flexibility and control in the face of competing cognitive demands. The task presents

two cards: the first displays the name of a color (e.g., "black"), while the second

features a color name printed in a color that does not match the word (e.g., the word

"red" printed in black ink). This incongruence between the word meaning and the

ink color introduces a conflict that the brain must resolve, a process that mirrors the

cognitive recalibration required when an interruption occurs. Participants are tasked

with determining whether the color of the text on one card matches the name of the

color on the other card, responding by clicking Yes or No, as depicted in Figure 2.3.

The inclusion of this task in the study serves a dual purpose. First, it allows for

the quantification of the cognitive cost associated with task-switching and attention

reallocation, which are critical when managing interruptions. Second, it provides in-
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Figure 2.3: The Stroop-like interruption task requires participants to determine if there
is a match between the text meaning on the left card and the text color on the right card.
Responses are submitted by selecting “Yes” for a match in both meaning and color, and “No”
for non-matching cards. In this example, the correct response is “Yes”.

sights into the participants’ ability to maintain task performance under conditions of

conflicting information, a skill that is paramount in environments where interruptions

are frequent and often require immediate cognitive processing.

Comparative Math Questions: This task was selected for its capacity to engage

participants in analytical and numerical processing, simulating a common type of

interruption encountered in many professional settings. In such scenarios, individuals

are frequently required to momentarily disengage from their primary task to address

analytical demands or perform numerical problem-solving, making this task highly

representative of real-world interruptions.

The structure of the comparative math task involves the presentation of two cards,

each displaying a simple arithmetic problem involving addition, subtraction, or mul-

tiplication of two single-digit numbers. The participant’s challenge is to compute the

results quickly and accurately, and then determine which of the two cards represents

the larger numerical value. Illustrated in Figure 2.4, the task demands the execution
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Figure 2.4: In the math interruption task, participants are asked to solve two mathematical
expressions and select the card with the greater value.

of basic arithmetic operations and the comparative analysis of the outcomes.

In contrast to the Stroop-like task, the comparative math task places a direct

demand on the participant’s attentional resources for calculation and numerical pro-

cessing. This distinction in cognitive demands ensures a diverse range of interruption

types are examined. Moreover, the inclusion of this task is supported by findings

that engaging in complex problem-solving, such as mathematics, can disrupt the par-

ticipant’s ability to maintain and rehearse information from the primary task (Zish

et al., 2020).

2.3.3 Study Variables

We identified and manipulated four specific variables within our study design:

1. Training (Interleaved vs. Consecutive Interruptions):

(a) Purpose: To assess the differential impact of interruptions that are inter-

leaved with primary tasks as an intervention versus interruptions that are

presented consecutively after the completion of primary tasks.

(b) Rationale: This variable allows us to explore how the timing and inte-

gration of interruptions with primary tasks influence cognitive load and
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task resumption strategies, offering insights into the most effective train-

ing methodologies for minimizing the disruptive effects of interruptions.

2. Task Novelty (Consistent vs. Varied Tasks Across Phases):

(a) Purpose: This study aims to investigate the impact of task type variation

on performance metrics. Specifically, it examines the effects of training

participants on one task type during the intervention phase of a three-

phase study, and then switching to a different task type in both the pre-

intervention and post-intervention phases, as compared to maintaining a

consistent task type throughout all phases.

(b) Rationale: This variable probes the generalizability and transferability of

interruption management skills, testing whether skills learned in one con-

text (task type) can be effectively applied in another, thereby contributing

to the development of versatile interruption management strategies.

3. Type of Primary Task (Tower of Hanoi vs. Path Recall Task):

(a) Purpose: To evaluate how different types of primary tasks, each with

unique cognitive demands (strategic problem-solving vs. memory recall),

affect performance metrics.

(b) Rationale: By comparing the impact of interruptions on tasks with varying

cognitive requirements, this variable provides a deeper understanding of

how task nature influences the cognitive strategies employed to manage

interruptions and maintain task performance.
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# Pre-Intervention Intervention Post-Intervention
1 Tower / Math Path / Math Tower/Math
2 Tower/Stroop Path/Stroop Tower/Stroop
3 Path/Math Tower/Math Path/Math
4 Path/Stroop Tower/Stroop Path/Stroop
5 Tower/Math Tower/Stroop Tower/Math
6 Tower/Stroop Tower/Math Tower/Stroop
7 Path/Math Path/Stroop Path/Math
8 Path/Stroop Path/Math Path/Stroop
9 Tower/Math Path⇝Math Tower/Math
10 Tower/Stroop Path⇝ Stroop Tower/Stroop
11 Path/Math Tower ⇝Math Path/Math
12 Path/Stroop Tower ⇝ Stroop Path/Stroop
13 Tower/Math Tower ⇝ Stroop Tower/Math
14 Tower/Stroop Tower ⇝Math Tower/Stroop
15 Path/Math Path⇝ Stroop Path/Math
16 Path/Stroop Path⇝Math Path/Stroop

Table 2.1: Each row represents a unique training variation. The first column represents the
variation number. The notation A/B denotes that the primary task A is being interrupted
by interrupting task B. In contrast, A ⇝ B denotes that primary task A precedes B and
participants are performing a series of task A and then a series of task B.

4. Type of Interrupting Task (Stroop-like vs. Comparative Math Task):

(a) Purpose: To assess whether different types of interrupting tasks, each

demanding distinct cognitive processes (conflict resolution vs. analytical

problem-solving), affect performance differently.

(b) Rationale: This variable enables us to explore whether the nature of the

interrupting task influences the cognitive cost of task switching and the

effectiveness of interruption handling strategies.

2.3.4 Training Variations and Sequential Phases

The study is structured around 16 unique variations of our training intervention,

each representing a distinct combination of the four study variables. The variations,

labeled 1 to 16, are detailed in Table 2.1, offering a comprehensive breakdown of each
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training variation.

The intervention for each participant unfolds across three structured phases, each

serving a specific purpose:

1. Pre-Intervention Phase: This phase involves an initial task assessment aimed

at measuring baseline performance on the primary and interrupting tasks, prior

to the introduction of any training intervention. This benchmarking is vital,

serving as a comparative reference point for assessing performance shifts at-

tributable to the training intervention.

2. Intervention Phase: At the heart of the study lies the Intervention phase,

where participants are immersed in one of the 16 training variations. This

phase is crafted to deliver targeted training interventions, with each variation

uniquely designed to bolster the participant’s capacity to manage interruptions

and foster an enhanced tolerance to such disruptions.

3. Post-Intervention Phase: The culmination of the intervention is marked

by the Post-Intervention phase. Participants re-engage with the same set of

tasks as in the Pre-Intervention phase, allowing for a direct comparison of

post-intervention performance against the initial benchmarks. This phase is

instrumental in capturing the tangible outcomes of the training, highlighting

any notable improvements or changes in task performance as a result of the

intervention.

Crucially, each training variation maintains consistency in task presentation during

both the pre- and post-intervention phases. This ensures that any observed differences
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in performance can be accurately attributed to the influence of the intervention phase,

thereby allowing for a precise measurement of improvement. Systematically varying

the training conditions across the 16 unique variations, the study is positioned to

unravel and pinpoint the factors that significantly contribute to an enhanced tolerance

to interruptions and a more efficient recovery from such disruptions.

2.3.5 Performance Metrics, Recruitment, Screening, and Data

Collection

In this study, we integrate a multifaceted approach to evaluate the efficacy of training

variations, employing four primary metrics to gain a comprehensive understanding

of participants’ cognitive responses. To facilitate this analysis, we developed a sys-

tematic framework for participant engagement and automated data collection. The

study, built with Unity3D, was delivered online, accessible to participants through the

Prolific platform (Palan and Schitter, 2018). Upon entry, participants were oriented

with a study briefing and a demographic survey.

Before embarking on the study phases (pre-intervention, intervention, and post-

intervention), participants underwent a detailed tutorial, ensuring a clear understand-

ing of the tasks. Upon completion, participants were assigned a unique identifier to

claim their compensation through Prolific. The data, once collected, underwent pro-

cessing by our team and was securely stored, setting the stage for an in-depth analysis

in line with our cognitive performance metrics.

Recruitment through Prolific attracted 257 initial responses. Ensuring data qual-

27



ity, our screening process filtered participants based on criteria such as adulthood,

English fluency, no prior participation in our studies, and a Prolific approval rate

above 95%. To safeguard against factors that might skew the analysis, we excluded

participants with conditions like color blindness and those who failed to demonstrate

comprehension in a preliminary tutorial requiring three consecutive correct responses.

Furthermore, we refined our dataset by excluding results from participants scoring

below 60% accuracy in any phase or showing more than two minutes of inactivity,

thus focusing on data reflecting genuine engagement and comprehension. This led to

the exclusion of seventeen participants due to low accuracy scores (N = 2) or timed-

out responses (N = 15). The final dataset for our study comprised 240 participants,

with a balanced sampling that ensured an equal distribution between male and female

participants. This even representation formed the basis of our analysis.

2.4 Results

Our analytical approach primarily employed Analysis of Variance (ANOVA), encom-

passing both repeated measures and mixed-model methodologies. To adhere to the

normality assumptions, Q-Q plots and Shapiro-Wilk tests were utilized (Shaphiro

and Wilk, 1965). For homoscedasticity, accuracy measurements underwent a square

transformation. The independence of observations was maintained within and across

the variational groups, and dependent variables were quantified at the interval level

to facilitate meaningful comparisons.

In the computation of Cohen’s d, our methodology was nuanced, reflecting the
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complexity of our data. For Mixed-Model ANOVA, the classic computation of Co-

hen’s d was employed. Conversely, for repeated measures ANOVA, we adapted our

approach to align with the paired nature of our data, utilizing Cohen’s dz specifi-

cally for paired samples (Goulet-Pelletier and Cousineau, 2018). This dual approach

ensured that our effect size measurements were attuned to our data’s structure.

2.4.1 Overall Effects and Their Interactions

Our initial analysis employed a mixed linear model to examine the comprehensive

effects and interactions of our primary dependent variables – Variations and Phases.

This model facilitated the extraction of main effects and the detailed exploration of

two-way interactions between these factors, effectively capturing the dynamics within

the dataset. The model was particularly suited for analyzing the correlation of obser-

vations within individual subjects across various phases, ensuring a thorough under-

standing of the data. Additionally, it incorporated random effects, accommodating

individual variability and adding a layer of depth to the analysis. A significant focus

was placed on resumption lag.

Resumption Lag: The model’s intercept established the baseline level for re-

sumption lag at 4.612 seconds, indicating a pronounced inherent challenge in task

resumption. This baseline was statistically significant compared to zero (p ≤ 0.001),

signifying that the observed resumption lag of 4.612 seconds is a substantial factor

and not merely a random variation. This emphasizes the intrinsic difficulty associated

with resuming tasks. Further analysis of the influence of variations on resumption
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lag revealed notable discrepancies.

In this analysis, we formulated a model encompassing all main effects and two-way

interactions between variations and phases, with a particular focus on the impact

on resumption lag. The model’s intercept was set at 4.612 seconds, representing

the baseline level of resumption lag when all predictors are at their reference levels,

denoting a statistically significant baseline level of resumption lag before accounting

for the influence of variations and phases.

When examining the effects of variations on resumption lag, we identified signif-

icant differences for numerous variations compared to the baseline group (variation

1). Specifically, the model revealed significant effects of variation 3 (β = 5.952,

p ≤ 0.001), variation 4 (β = 8.166, p ≤ 0.001), variation 7 (β = 6.021, p ≤ 0.001),

variation 8 (β = 7.357, p ≤ 0.001), variation 11 (β = 5.752, p ≤ 0.001), variation

12 (β = 7.585, p ≤ 0.001), variation 15 (β = 5.704, p ≤ 0.001), and variation 16

(β = 5.970, p ≤ 0.001). Estimated coefficients are denoted as β.

The post-intervention phase exhibited a general trend of decreased resumption

lag (β = −0.762, p = 0.089); however, this trend from the pre-intervention to the

post-intervention phases did not reach statistical significance. No significant changes

were observed in the other phases.

Moreover, the interaction effects on resumption lag were significant, suggesting

that the variations in resumption lag from the pre-intervention phase to the post-

intervention phase differed significantly when compared to the baseline group. No-

table interaction terms included variation 4 (β = −1.243, p = 0.050) and variation

16 (β = −1.569, p = 0.013), indicating substantial changes in resumption lag due to
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these specific training variations.

Interruption Lag: The Mixed Linear Model (MixedLM) identified the baseline

for interruption lag at 5.416 seconds, marking a significant initial delay in handling

interruptions as compared to zero (p ≤ 0.001). This analysis revealed substantial

variability in interruption lag across different conditions. Notably, the comparison

between the Post phase and the Pre phase indicated a significant reduction in in-

terruption lag, suggesting that the Post phase was characterized by notably shorter

lags. This observed decrease in the Post phase implies an enhancement in the par-

ticipants’ capability to manage interruptions, presumably influenced by the training

interventions.

Upon examining the influence of variations on interruption lag, the model dis-

cerned significant differences for several variations when compared to the baseline

group (variation 1). Noteworthy findings include the significant effect of variation

2 (β = −1.413, p ≤ 0.001), variation 4 (β = −1.055, p = 0.016), variation 6

(β = −1.919, p ≤ 0.001), variation 8 (β = −1.462, p ≤ 0.001), variation 10

(β = −1.574, p ≤ 0.001), variation 12 (β = −1.100, p = 0.012), variation 13

(β = −1.288, p = 0.003), variation 14 (β = −1.045, p = 0.017), and variation 15

(β = −0.879, p = 0.044).

The analysis also highlighted a significant phase effect on interruption lag, par-

ticularly notable in the post-intervention phase (β = −1.502, p ≤ 0.001), while no

significant effects were observed for other phases.

Moreover, interaction effects on interruption lag were found to be significant,

indicating that the changes in interruption lag from the pre-intervention phase to
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the post-intervention phase varied significantly among the variations in comparison

to the baseline group. Significant interaction terms included variation 2 (β = 0.885,

p = 0.028), variation 4 (β = 0.906, p = 0.025), and variation 5 (β = 1.569, p ≤ 0.001),

highlighting shifts in interruption lag due to these specific training variations.

Accuracy in the Path Recall Task: Employing the mixed linear model, we in-

tegrated all main effects and two-way interactions between variations and phases. The

model’s intercept was set at 0.822%, establishing the foundational level of accuracy in

the path recall task when all predictors are at their reference levels (p ≤ 0.001). This

value represents the baseline performance in terms of accuracy before considering the

potential impacts of variations and phases.

Upon examining the influence of variations on accuracy within the path recall

task, we found that no variation yielded a significant effect (p > 0.05). However, the

analysis highlighted a significant phase effect on accuracy. Specifically, a compari-

son between the post-intervention and pre-intervention phases revealed a meaningful

increase in accuracy in the post-intervention phase (β = 0.081, p ≤ 0.001).

Further scrutiny was given to the interaction effects between variations and phases

concerning accuracy in the path recall task. Among these, the interaction term for

variation 12 stood out as significant (β = −0.069, p = 0.0405), suggesting a distinct

influence of this specific variation on accuracy, particularly when considering the

interaction with different phases of the study.

Optimality of Performing the Tower of Hanoi: As highlighted earlier, op-

timality is quantified by the discrepancy between the participant’s number of steps

taken and the minimum number of steps theoretically required to solve the puzzle.
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A smaller differential indicates superior performance, denoting efficiency in puzzle-

solving. In our analysis, the mixed linear model was employed, integrating all main

effects and two-way interactions between variations and phases. The intercept was

set at 1099.566%, signifying the baseline level of optimality when all predictors are

at their reference levels (p ≤ 0.001).

Delving into the effects of variations on optimality within the Tower of Hanoi task,

notable findings emerged. Specifically, variation 6 was associated with a significant

improvement in optimality (β = −139.082, p = 0.027), indicating a reduction in the

number of steps close to the optimal number of steps tp take. Similarly, variation 9

also exhibited a significant enhancement in optimality (β = −134.925, p = 0.032).

However, the other variations related to the Tower of Hanoi task did not manifest

statistically significant alterations in optimality.

Moreover, the analysis showed a substantial phase effect on optimality in the Tower

of Hanoi task. Notably, the post-intervention phase marked a significant improvement

in optimality (β = −178.141, p = 0.005), underscoring enhanced performance in this

phase. The other phases did not exhibit significant changes in this regard.

We also investigated interaction effects on optimality in the Tower of Hanoi task.

Although most interaction terms did not attain statistical significance (p > 0.05), the

overall analysis underscores a complex interplay among variations, phases, and their

interactions.

Speed of Task Completion: A reduction in time is indicative of enhanced

performance, reflecting increased speed. The mixed linear model was employed to

encompass all main effects and two-way interactions between variations and phases.
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The intercept was established at 48.345 seconds, representing the baseline speed in

task completion when all predictors are at their reference levels (p ≤ 0.001).

In our analysis of the variations’ impact on speed in task completion, specific pat-

terns emerged. Notably, significant improvements in speed were observed in variation

3 (β = −28.827, p ≤ 0.001) and variation 4 (β = −26.969, p ≤ 0.001). These findings

indicate a marked decrease in the time taken to complete tasks, suggesting enhanced

efficiency. However, the remaining variations did not demonstrate statistically signif-

icant changes in speed.

Additionally, the phase effect on task completion speed was pronounced. The

post-intervention phase was characterized by a notable improvement in speed (β =

−15.243, p ≤ 0.001), pointing to a significant enhancement in performance. No

similar significant effects were detected in the other phases.

Interaction effects on speed in task completion were examined. Significant in-

teraction terms were identified, including variation 3 (β = 14.335, p ≤ 0.001) and

variation 4 (β = 13.854, p ≤ 0.001). While these terms exhibit positive coefficients,

their interpretation necessitates careful consideration within the overall model con-

text and the specific dynamics of the interaction terms. It is crucial to note that

positive coefficients in this setting may not straightforwardly signify a deterioration

or improvement in speed but might instead encapsulate interactions between vari-

ations and phases. This is particularly pertinent given the varying time durations

associated with the different primary tasks involved. Other variations did not exhibit

significant interaction effects on speed.
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2.4.2 Effect of Training

Our investigation focused on determining the efficacy of practice-based interruptions

training. This was quantitatively measured through observed improvements in key

performance metrics: resumption lag, interruption lag, task completion speed, and

response accuracy, comparing outcomes between the pre- and post-intervention phases

across all training variations.

To assess the impact of the intervention on these performance metrics, we em-

ployed repeated measures ANOVA. This analysis allows each performance metric to

be treated as a dependent variable, enabling us to monitor the evolution of these

variables for each participant through different study phases. By employing repeated

measures ANOVA, we leveraged the mean as the aggregation function to scrutinize

the within-subject effects.

The core objective of this approach was to discern any statistically significant

changes in performance metrics that could be directly attributed to the training

interventions. This method is instrumental in unraveling how these variables sys-

tematically affect the performance metrics of participants. Our analysis culminated

in the observation of statistically significant improvements across each performance

metric. These enhancements were evident when comparing participant performances

from the pre-intervention phase to those in the post-intervention phase across all vari-

ations of training, as depicted in Figure 2.5. For resumption lag, the 240 participants

demonstrated an average of 6.95 seconds for each resumption (SD = 5.37s) in the

pre-intervention phase, which decreased to an average of 5.89 seconds (SD = 4.66s)
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Figure 2.5: Change in performance due to training. The averages and 95% confidence
intervals are shown for the resumption lag, interruption lag, and speed (task completion
time), as well as the inaccuracies or error rate of the path recall task and number of excessive
moves during the Tower of Hanoi task. Changes in each performance metric between the
pre- and post-intervention phases show significant improvements resulting from training.

in the post-intervention phase. The training intervention led to a reduction in par-

ticipants’ resumption lag by approximately 15.3% or 1.07 seconds between phases,

regardless of the tasks they trained on. These improvements were statistically sig-

nificant (F (1, 239) = 63.29, p ≤ 0.001), with an effect size (Cohen’s dz) of 0.51,

indicating a moderate effect.

For interruption lag, participants demonstrated an average of 3.23 seconds for

each interruption (SD = 2.35s) in the pre-intervention phase, which decreased to

an average of 2.59 seconds (SD = 2.64s) in the post-intervention phase. The in-

tervention reduced participants’ interruption lag by 20.0% or 0.65 seconds between

phases, regardless of the tasks they trained on. These improvements were significant

(F (1, 239) = 55.81, p ≤ 0.001), with a Cohen’s dz of 0.48, indicating a small to
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moderate effect size.

Regarding the path recall task, 120 participants experienced it as their primary

training task (variations 3, 4, 7, 8, 11, 12, 15, and 16). In the pre-intervention

phase, participants had a benchmark average error of 0.82% (SD = 0.32%) on each

path recall task, which increased to an average error of 0.89% (SD = 0.26%) in

the post-intervention phase. The intervention increased participants’ error rates by

approximately 8.4% between phases. These changes were significant (F (1, 119) =

27.31, p ≤ 0.001), with a Cohen’s dz of 0.48, indicating a moderate effect.

For the Tower of Hanoi task, experienced by the remaining 120 participants, there

was an average of 131% (SD = 1027%) excessive moves to complete each task during

the pre-intervention phase. This improved to an average of 18% (SD = 53.70%)

excessive moves in the post-intervention phase, reducing participants’ excessive moves

by 86%. These improvements were significant (F (1, 119) = 29.28, p ≤ 0.001), with a

Cohen’s dz of 0.49, indicating a moderate effect.

For response speed, participants showed a benchmark average of 21.45 seconds

(SD = 26.73s) for each primary task completion time in the pre-intervention phase.

This improved to an average of 14.73 seconds (SD = 13.40s) in the post-intervention

phase, enhancing participants’ response speed by 31% or 6.72 seconds. These im-

provements were also significant (F (1, 239) = 122.71, p ≤ 0.001), with a Cohen’s dz

of 0.72, indicating a moderate, non-trivial effect.

These results reveal significant improvements in each performance metric across all

training variations. To assess the potential influence of the specific amount of practice

on the primary tasks over time, we conducted a comparative analysis. Training
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variations involving consistent exposure to the same primary task across all three

phases (variations 5-8 and 13-16) were compared with those involving less exposure

to the same primary task, limited to two of the three phases (variations 1-4 and 9-12).

This comparative analysis yielded noteworthy insights. No significant differences

were observed in the extent of improvements between training variations with more

exposure to the same task and those with less exposure. Specifically, the difference in

average improvement for resumption lag between the more and less exposed variations

was negligible at 0.03 seconds (SD = 0.01s; z = 0.11, p = 0.91). For interruption

lag, the difference was -0.22 seconds (SD = 0.11s; z = −1.30, p = 0.19); for accuracy

in the path recall task, the difference was -0.01% (SD = 0.01%; z = 0.41, p = 0.68);

for accuracy in the Tower of Hanoi task, the difference was -17.66% (SD = 8.83%;

z = 0.38, p = 0.71); and for response speed, the difference was -0.98 seconds (SD =

0.49s; z = 0.81, p = 0.42).

This analysis suggests that the extent of exposure or practice with the primary

tasks alone does not solely account for the observed improvements resulting from the

training intervention. The statistically significant enhancements observed between

the pre- and post-intervention phases across all study variations and performance

metrics underscore the efficacy of our training intervention in improving individuals’

tolerance to interruptions in these tasks.
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2.4.3 Effect of Training with Novel Primary Tasks

We investigated whether training with novel primary tasks could augment the ob-

served tolerance to interruptions. Specifically, we aimed to discern if engaging with

new, unfamiliar tasks could also be an effective mechanism for building interruption

tolerance. To this end, we applied our established analytical approach—comparing

performance metrics between the pre-intervention and post-intervention phases—to

the training variations involving novel primary tasks (variations 1-4 and 9-12). A

total of 120 participants were exposed to these training variations featuring novel

primary tasks. Our analysis confirmed that training with novel primary tasks led to

statistically significant improvements across all performance metrics. See Figure 2.6.

For resumption lag, the 120 participants exhibited an average of 7.10 seconds for

each resumption (SD = 5.74s) in the pre-intervention phase, which decreased to 6.05

seconds (SD = 5.09s) in the post-intervention phase. The training reduced partic-

ipants’ resumption lag by about 15.8% or 1.05 seconds between phases, regardless

of the primary task. Improvements were statistically significant (F (1, 119) = 24.48,

p ≤ 0.001), with a Cohen’s dz of 0.45, indicating a small effect size.

For interruption lag, participants demonstrated an average of 3.31 seconds for each

interruption (SD = 2.34s) in the pre-intervention phase, decreasing to 2.58 seconds

(SD = 1.85s) in the post-intervention phase. The intervention reduced participants’

interruption lag by 22.88% or 0.67 seconds between phases, regardless of the tasks they

were trained on. These improvements were significant (F (1, 119) = 55.36, p ≤ 0.001),

with a Cohen’s dz of 0.67, indicating a moderate effect size.
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Figure 2.6: Change in performance due to training with novel tasks. The averages
and 95% confidence intervals are shown for the resumption lag, interruption lag, and speed
(task completion time), as well as the inaccuracies or error rate of the path recall task and
number of excessive moves during the Tower of Hanoi task. Changes in each performance
metric between the pre- and post-intervention phases show significant improvements result-
ing from training interventions with novel primary tasks.

In terms of accuracy in the path recall task, participants had an average error of

0.82% (SD = 0.32%) in the pre-intervention phase, compared to 0.89% (SD = 0.27%)

in the post-intervention phase. The training intervention increased participants’ error

rates by about 7.74% between phases. These changes were significant (F (1, 59) =

11.13, p ≤ 0.001), with a Cohen’s dz of 0.43, indicating a moderate effect that is not

trivial.

For the Tower of Hanoi task, participants exhibited an average of 145% (SD =

1240%) excessive moves to complete the task in the pre-intervention phase, improving

to 23.56% (SD = 63.58%) in the post-intervention phase. The training intervention

reduced participants’ excessive moves by 122%. These improvements were also signif-

icant (F (1, 59) = 11.09, p ≤ 0.001), with a Cohen’s dz of 0.43, reflecting a moderate
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effect.

For response speed, participants showed a benchmark average of 20.06 seconds

(SD = 29.15s) for task completion in the pre-intervention phase, which improved

to 14.84 seconds (SD = 13.53s) in the post-intervention phase. The training in-

tervention enhanced participants’ response speed by 32.69% or 7.21 seconds. These

improvements were also significant (F (1, 119) = 51.77, p ≤ 0.001), with a Cohen’s dz

of 0.66, indicating a moderate, non-trivial effect.

2.4.4 Effect of Training with Novel Interrupting Tasks

We explored whether training with novel interrupting tasks could serve as an effective

method for enhancing tolerance to interruptions. Employing the same analytical

methods as before, we analyzed the performance metrics for training variations that

introduced novel interrupting tasks (variations 5-8 and 13-16). Our findings affirm

that training with novel interrupting tasks led to statistically significant improvements

across all performance metrics, as depicted in Figure 2.7.

For resumption lag, the 120 participants exhibited an average of 6.81 seconds for

each resumption (SD = 4.96s) in the pre-intervention phase. This average decreased

to 5.73 seconds (SD = 4.19s) in the post-intervention phase. The training reduced

participants’ resumption lag by about 15.85% or 1.08 seconds between phases, inde-

pendent of the tasks they were trained on. These improvements were statistically

significant (F (1, 119) = 43.34, p ≤ 0.001), with a Cohen’s dz of 0.60, indicating a

moderate effect size. For interruption lag, participants demonstrated an average of
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Figure 2.7: Change in performance due to training with novel interruptions.
The averages and 95% confidence intervals are shown for the resumption lag, interruption
lag, and speed (task completion time), as well as the inaccuracies or error rate of the path
recall task and number of excessive moves during the Tower of Hanoi task. Changes in
each performance metric between the pre- and post-intervention phases showed significant
improvements resulting from training interventions with novel interrupting tasks.

3.15 seconds for each interruption (SD = 2.35s) in the pre-intervention phase. This

reduced to 2.61 seconds (SD = 3.25s) in the post-intervention phase, marking a

reduction in interruption lag by 16.97% or 0.53 seconds due to training. These im-

provements were significant (F (1, 119) = 14.81, p ≤ 0.001), with a Cohen’s dz of 0.35,

suggesting a small effect size.

In terms of accuracy, participants had a benchmark average error of 0.83% (SD =

0.32%) on each path recall task in the pre-intervention phase, compared to 0.90%

(SD = 0.25%) in the post-intervention phase. The training intervention increased

participants’ error rates by approximately 0.07% between phases. These changes

were significant (F (1, 59) = 16.32, p ≤ 0.001), with a Cohen’s dz of 0.52, indicating a

moderate effect that is noteworthy.
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For the Tower of Hanoi task, participants initially had an average of 117% (SD =

757.99%) excessive moves to complete each task during the pre-intervention phase.

This improved to 12.57% (SD = 40.83%) excessive moves in the post-intervention

phase, signifying a reduction of 89.26% in excessive moves due to the training. These

improvements were also significant (F (1, 59) = 25.97, p ≤ 0.001), with a Cohen’s dz

of 0.66, reflecting a moderate effect.

For response speed, participants had a benchmark average of 20.85 seconds (SD =

24.05s) for task completion in the pre-intervention phase. This improved to 14.62 sec-

onds (SD = 13.25s) in the post-intervention phase, enhancing participants’ response

speed by 29.88% or 6.23 seconds. Improvements were also significant (F (1, 119) =

82.59, p ≤ 0.001), with a Cohen’s dz of 0.83, indicating a large effect size.

In conclusion, the results suggest that incorporating a novel interrupting task

during training can effectively enhance performance across each evaluated metric.

2.4.5 Effect of Training Method

Our analysis probed the transferability of the interruption tolerance skills acquired

through our training interventions. We aimed to discern if training with interspersed

interruptions yielded performance compared to training with interruption-like tasks

and primary tasks presented independently. We used a mixed-model ANOVA to

evaluate the impact of these two methods on performance, comparing training vari-

ations that integrate primary tasks with interruptions (variations 1-8) against those

presenting primary and interrupting tasks separately, in sequence (variations 9-16).
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Figure 2.8: Difference in improvements between training methods. The averages
and 95% confidence intervals are shown for the resumption lag, interruption lag,
and speed (task completion time), as well as the inaccuracies or error rate of the
path recall task and the number of excessive moves during the Tower of Hanoi
task. We observe no no statistically significant differences in the magnitude of
improvement between the two training methods.

Although improvements in interruption tolerance were noted across all training

variations, analysis showed no statistically significant differences in the magnitude of

improvement between the two training methods, as depicted in Figure 2.8.

For changes in resumption lag, participants undergoing training with interspersed

interruptions demonstrated an average improvement of 0.99 seconds (SD = 0.70s),

while those with consecutively presented tasks showed an average improvement of

1.14 seconds (SD = 0.81s). The difference between these training methods was not

statistically significant (z = 0.55, p = 0.58), with a calculated Cohen’s d of 0.07,

indicating a small effect size.

Regarding changes in interruption lag, participants experienced an average im-

provement of 0.64 seconds (SD = 0.46s) for training with interspersed interruptions,
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compared to an average improvement of 0.65 seconds (SD = 0.46s) for training

with separate tasks. The difference in improvement was not significant (z = −0.03,

p = 0.98), yielding a Cohen’s d of 0.01, reflecting a small effect size.

In terms of accuracy changes, training variations with interspersed interruptions

led to an average error rate reduction of 0.07% (SD = 0.05%) for each path recall task,

while variations with consecutively presented tasks resulted in an average reduction

of 0.06% (SD = 0.05%). This difference was not significant (z = −0.35, p = 0.73),

with a calculated Cohen’s d of -0.03, suggesting a negligible effect size.

For the Tower of Hanoi task, training with interspersed interruptions led to an

average reduction of excessive moves by 150% (SD = 105.85%), whereas training

with separate tasks resulted in a reduction of 76.94% (SD = 54.40%). The difference

between these training methods was not significant (z = 1.56, p = 0.12), and the

calculated Cohen’s d was 0.06, indicating a small effect size.

In response speed, training with interspersed interruptions yielded an average

improvement of 6.92 seconds (SD = 4.89s) in task completion time, whereas training

with separate tasks showed an average improvement of 6.52 seconds (SD = 4.61s).

The difference between these training methods was not significant (z = 0.33, p =

0.74), with a calculated Cohen’s d of 0.06, suggesting a small effect size.

In conclusion, the absence of statistically significant differences between the two

training methods across performance metrics implies that both approaches are com-

parably effective in enhancing one’s tolerance to interruptions.
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Figure 2.9: Difference in improvements between training methods due to novel
tasks. The averages and 95% confidence intervals are shown for the resumption
lag, interruption lag, and speed (task completion time), as well as the inaccu-
racies or error rate of the path recall task and the number of excessive moves
during the Tower of Hanoi task. We observe significant differences in partici-
pants’ improved accuracy and speed (task completion time) when comparing the
training variations that present varying primary tasks with interruptions to the
training variations that present primary tasks and interrupting tasks separately.

Effect of Training Method with Novel Primary Tasks

While our previous findings did not distinguish one interruptions practice approach

as more effective than another, we further explored the influence of presenting a

novel task during training on the efficacy of each training approach. Specifically,

we compared the training variations that presented primary tasks interspersed with

interruption tasks (variations 1-4) against those that presented primary tasks and

interruption tasks consecutively (variations 9-12), with a focus on variations involving

novel tasks. Our analysis revealed statistically significant differences in participants’

improvement between these two training approaches in terms of accuracy and speed

(time to completion) performance metrics, as depicted in Figure 2.9.
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For changes in resumption lag, participants undergoing training with interspersed

interruptions showed an average improvement of 1.03 seconds (SD = 0.73s), while

those with consecutively presented tasks demonstrated an average improvement of

1.07 seconds (SD = 0.76s). The difference between these training methods was not

statistically significant (z = −0.09, p = 0.93), with a calculated Cohen’s d of 0.01,

indicating a small effect size.

Regarding changes in interruption lag, participants experienced an average im-

provement of 0.89 seconds (SD = 0.63s) for training with interspersed interruptions,

compared to an average improvement of 0.62 seconds (SD = 0.44s) for training

with separate tasks. The difference in improvement was not significant (z = 1.33,

p = 0.18), yielding a Cohen’s d of 0.01, reflecting a negligible effect size.

In terms of accuracy changes, training variations with interspersed interruptions

led to an average error rate reduction of 0.1% (SD = 0.07%) for each path recall task,

while variations with consecutively presented tasks resulted in an average reduction

of -0.03% (SD = 0.02%). This difference was significant (z = −1.98, p ≤ 0.05), with

a calculated Cohen’s d of 0.21, suggesting a small effect size.

For the Tower of Hanoi task, training with interspersed interruptions led to an

average reduction of excessive moves by 201% (SD = 142%), whereas training with

separate tasks resulted in a reduction of 42.84% (SD = 30.29%). The difference

between these training methods was also significant (z = 2.00, p ≤ 0.05), and the

calculated Cohen’s d was 0.11, indicating a small effect size.

In response speed, training with interspersed interruptions yielded an average

improvement of 8.12 seconds (SD = 5.75s) in task completion time, while training
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with separate tasks showed an average improvement of 6.29 seconds (SD = 4.45s).

The difference between these training methods was not significant (z = 0.92, p =

0.36), with a calculated Cohen’s d of 0.05, suggesting a negligible effect size.

In conclusion, the presence of a novel primary task during training led to sig-

nificantly different improvements between the two training methods, particularly in

terms of accuracy and speed. Considering the observed improvements in resumption

and interruption lags, both training with interspersed interruptions, and the sepa-

rate sequential tasks and interruptions approach, could serve as effective methods for

improving tolerance to interruptions when faced with novel primary tasks.

Effect of Training Method with Novel Interrupting Tasks

Our investigation further delved into whether the presence of a novel interrupting task

during training influenced the efficacy of each training method. Specifically, we com-

pared the training variations that integrated primary tasks with novel interruptions

(variations 5-8) against those that presented primary tasks and novel interrupting

tasks separately (variations 13-16), as depicted in Figure 2.10.

While we previously identified improvements in tolerance to interruptions, partic-

ularly in terms of accuracy in training variations involving novel tasks, our current

analysis found no statistically significant differences in the magnitude of improvement

between these two training approaches with novel interruptions.

For changes in resumption lag, participants undergoing training with interspersed

interruptions showed an average improvement of 0.95 seconds (SD = 0.67s), while

those with consecutively presented tasks demonstrated an average improvement of
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Figure 2.10: Difference in improvements between training methods due to novel
tasks. The averages and 95% confidence intervals are shown for the resumption
lag, interruption lag, and speed (task completion time), as well as the inaccu-
racies or error rate of the path recall task and the number of excessive moves
during the Tower of Hanoi task. We observe no no statistically significant differ-
ences in the magnitude of improvement when comparing the training variations
that present varying primary tasks with novel interruptions to the training vari-
ations that present primary tasks and interrupting tasks separately in sequence.

1.21 seconds (SD = 0.85s). The difference between these training methods was not

statistically significant (z = 0.79, p = 0.43), with a calculated Cohen’s d of 0.17,

indicating a small but potentially meaningful effect size.

Regarding changes in interruption lag, participants experienced an average im-

provement of 0.39 seconds (SD = 0.28s) for training with interspersed interruptions,

compared to an average improvement of 0.68 seconds (SD = 0.48s) for training

with separate tasks. The difference in improvement was not significant (z = 1.02,

p = 0.31), yielding a Cohen’s d of 0.06, reflecting a very small or negligible effect size.

In terms of accuracy changes, training variations with interspersed interruptions

led to an average error rate reduction of 0.05% (SD = 0.03%) for each path recall task,
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while variations with consecutively presented tasks resulted in an average reduction

of 0.10% (SD = 0.07%). This difference was not significant (z = 1.51, p = 0.13),

with a calculated Cohen’s d of -0.29, suggesting a small to medium effect size.

For the Tower of Hanoi task, training with interspersed interruptions led to an

average reduction of excessive moves by 97.94% (SD = 69.25%), whereas training

with separate tasks resulted in a reduction of 111.04% (SD = 78.52%). The difference

between these training methods was not significant (z = −0.27, p = 0.79), and the

calculated Cohen’s d was 0.01, indicating a negligible effect size.

In response speed, training with interspersed interruptions yielded an average

improvement of 5.71 seconds (SD = 4.04s) in task completion time, while training

with separate tasks showed an average improvement of 6.75 seconds (SD = 4.77s).

The difference between these training methods was not significant (z = −0.76, p =

0.45), with a calculated Cohen’s d of 0.08, suggesting a negligible effect size.

In conclusion, the absence of statistically significant differences between the two

training methods across performance metrics implies that both approaches are com-

parably effective in enhancing one’s tolerance to interruptions when novel interrupting

tasks are introduced.

2.4.6 Effect of Task Types

We delved into the influence of task type on the efficacy of our training intervention.

While direct comparisons of performance averages by task type are not feasible, the

improvements in time-based performance metrics due to training with specific tasks
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Figure 2.11: Difference in improvements due to primary task type. Changes in
each performance metric show significant differences in participants’ improved resumption
lag, response accuracy, and speed due to the primary task type (i.e., the path recall or Tower
of Hanoi) presented during the training intervention.

are comparable. We commenced by contrasting the enhancements resulting from

training variations that introduced the path recall task (i.e., variations 3, 4, 7, 8, 11,

12, 15, and 16) with those from training variations that presented the Tower of Hanoi

task (i.e., variations 1, 2, 5, 6, 9, 10, 13, and 14). Our findings indicate that the task

type significantly influences the degree of improvement, as shown in Figure 2.11.

For changes in resumption lag, participants undergoing training with the path

recall task showed an average improvement of 1.57 seconds (SD = 1.11s), while

those trained with the Tower of Hanoi task exhibited an average improvement of

0.56 seconds (SD = 0.40s). This difference was statistically significant (z = 3.881,

p ≤ 0.001), with a calculated Cohen’s d of 1.47, indicating a large effect size.

Regarding changes in interruption lag, participants trained with the path recall

task experienced an average improvement of 0.71 seconds (SD = 0.50s), compared
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to 0.59 seconds (SD = 0.41s) for those trained with the Tower of Hanoi task. The

difference in improvement was not significant (z = 0.69, p = 0.49), yielding a Cohen’s

d of 0.001, indicating a very small or negligible effect size.

For the change in accuracy, even though participants’ measures of the correctness

of responses to the path recall task were not comparable to participants’ approxima-

tion of optimal performance of the Tower of Hanoi tasks, we report the statistical

comparisons of both performance metrics to provide a full and detailed account of

the findings. Participants trained with the path recall task showed an average im-

provement of 0.07% (SD = 0.05%) in accuracy, while those trained with the Tower

of Hanoi task exhibited an average reduction of 113.32% (SD = 80.13%) in excessive

moves. This difference was significant (z = −4.87, p ≤ 0.001), with a calculated

Cohen’s d of -0.45, indicating a moderate effect size.

For changes in response speed, participants trained with the path recall task

showed an average improvement of 1.34 seconds (SD = 0.94s) in task completion

time, while those trained with the Tower of Hanoi task demonstrated an average

improvement of 12.10 seconds (SD = 8.55s). The difference between these training

methods was significant (z = −10.856, p ≤ 0.001), with a calculated Cohen’s d of

-1.13, indicating a very large effect size.

We further investigated whether the observed variations in the degree of improve-

ment were merely a result of increased exposure to a primary task over time. Com-

parisons were conducted between training variations that presented the path recall

task in two of the three phases (variations 3, 4, 11, and 12) and those with more

exposure to the path recall task in all three phases (variations 7, 8, 15, and 16). A
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similar analysis was performed for the Tower of Hanoi task, contrasting variations

with the task in two of the three phases (variations 1, 2, 9, and 10) against those with

more exposure in all three phases (variations 5, 6, 13, and 14).

No significant differences were observed in the degree of improvement between

training variations with more or less exposure to the path recall task. Specifically, for

changes in resumption lag, the difference in average improvements was -0.10 seconds

(SD = 0.05s; z = −0.22, p = 0.83); for changes in interruption lag, the difference

was -0.16 seconds (SD = 0.08s; z = −0.68, p = 0.50); for changes in accuracy, the

difference was -0.01% (SD = 0.01%; z = 0.41, p = 0.68); and for changes in response

speed, the difference was -0.30 seconds (SD = 0.15s; z = 0.86, p = 0.39).

Other than for interruption lag, no significant differences were observed in the

degree of improvement between training variations with more or less exposure to the

Tower of Hanoi task. Specifically, for changes in resumption lag, the difference in

average improvements was 0.05 seconds (SD = 0.22s; z = 0.209, p = 0.834); for

changes in interruption lag, the difference was 0.29 seconds (SD = 2.89s; z = 2.446,

p = 0.014); for changes in accuracy, the difference was 113.14 (SD = 647.49; z =

0.379, p = 0.705); and for changes in response speed, the difference was 0.41 seconds

(SD = 16.39s; z = 1.165, p = 0.244).

In conclusion, the task type significantly impacts the extent of improvement due

to training, with notable variations in the degree of enhancement across different

metrics. However, the degree of exposure to a specific primary task over time does

not appear to significantly influence the magnitude of improvement, suggesting that

the observed benefits of the training are not solely a result of increased task familiarity.
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2.5 Discussion and Implications

The findings from this study offer compelling support for the effectiveness of pedagog-

ical interventions in enhancing interruption tolerance and managing the disruptive ef-

fects of interruptions. The significant improvements observed across key performance

metrics post-intervention not only validate the efficacy of the training methods em-

ployed but also highlight their potential for broader application.

Generalizability of Training Effects One of the most striking outcomes of this

study is the generalizability of the training effects. The improvements in interrup-

tion management were not confined to the specific tasks or interruptions encountered

during the training, indicating a remarkable level of skill transferability. This sug-

gests that the cognitive strategies and skills honed through the structured, practice-

based training have far-reaching implications, extending their potential applicability

to diverse operational settings, including those involving complex human-robot in-

teractions. The versatility of the training methods used in this study underscores

their potential to be adapted and integrated into various professional environments,

enhancing the overall workflow efficiency and reducing the cognitive load associated

with interruptions.

Contributions to Interruption Management Discourse

This research makes a significant contribution to the discourse on interruption

management, a field that is becoming increasingly relevant in our multifaceted and

interruption-rich world. By providing empirical evidence for the feasibility and ef-

fectiveness of specific training interventions, this study paves the way for a under-
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standing of how individuals can be equipped to better manage interruptions. The

insights gleaned from this study are particularly valuable for sectors where preci-

sion and quick cognitive recovery are paramount, such as healthcare, aviation, and

information technology.

Avenues for Future Research

The findings from this study also open several avenues for future research. There

is an opportunity to delve deeper into how different types of tasks and interruptions

influence the effectiveness of training interventions. Further research could explore

the long-term effects of such training, assessing the durability of the interruption

management skills acquired. Additionally, future studies could examine the integra-

tion of technological aids, such as AI-driven task management systems, to support

interruption management, potentially leading to a synergistic enhancement of human

cognitive resilience in conjunction with structured training methods.

Optimizing Performance in the Face of Interruptions

Ultimately, this research emphasizes the importance of developing strategies to

optimize human performance in the face of interruptions. The findings underscore

the need for a proactive approach in designing work environments and training pro-

grams that not only mitigate the disruptive effects of interruptions but also empower

individuals to manage these interruptions effectively. By integrating the insights from

this study into practical applications, we can make strides towards creating more re-

silient, efficient, and safer work environments.
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2.6 Practical Implications and Recommendations

The insights derived from this research hold significant practical implications, partic-

ularly for high-stakes environments where the cost of interruptions can be substan-

tial. In sectors like healthcare, aviation, and information technology, where precision

and rapid cognitive recovery are not just beneficial but essential, the application of

structured interruption management training could be a game-changer, substantially

enhancing outcomes and safety.

For practitioners and organizational leaders, this study underscores the value of

embedding cognitive resilience training within regular professional development pro-

grams. Our research indicates potential benefits of cognitive resilience training in

high-stakes environments. While it appears to enhance individual performance, it

may also modestly contribute to the broader operational efficiency and safety within

organizations. This suggests that integrating such training into professional develop-

ment programs could be beneficial, although further research and customization to

specific sector needs are recommended for optimal effectiveness and relevance. The

training methods explored and validated in this study can serve as a foundational

blueprint for the development of customized training modules. These modules can

be tailored to meet the unique demands and contextual specifics of various sectors,

ensuring relevance and maximum impact.

Moreover, this research advocates for a proactive, rather than reactive, approach

to interruption management. It encourages organizations to strategically consider the

cognitive aspects of work design, integrating interruption management strategies into
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standard operational protocols. By doing so, organizations can significantly bolster

their employees’ capacity to handle interruptions, transforming potential disruptions

into manageable incidents with minimal impact on workflow continuity.

2.7 Limitations and Directions for Future Research

While the findings of this study are offer significant insights into the efficacy of struc-

tured training interventions in interruption management, it is crucial to acknowledge

the inherent limitations that may influence the interpretation and generalizability of

the results.

Firstly, one notable limitation of our experimental design is the absence of a

pure control condition. The lack of a control group in this study poses challenges

in isolating the specific impact of our practice-based interventions from potential

external factors. Without a baseline for comparison, it becomes challenging to discern

whether the observed improvements in participants’ abilities to handle interruptions

are solely attributable to the training variations or if they could be influenced by

extraneous variables. This limitation underscores the importance of incorporating a

control condition in future studies to enhance the validity of the findings. A well-

structured control condition would provide a clearer understanding of the unique

contributions of practice-based interventions and enable a more precise attribution of

the observed changes to the specific training methods employed.

Secondly, while the controlled nature of the study environment was beneficial for

isolating specific variables and effects, it may not fully capture the complexity and
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unpredictability inherent in real-world settings. The artificiality of a controlled en-

vironment can limit the applicability of the findings to naturalistic scenarios, where

numerous uncontrolled variables may interact with the training interventions. To

address this limitation, future research should aim to bridge this gap by implement-

ing and testing these training methods in situ. Conducting studies in naturalistic

settings, such as actual workplaces, could provide an understanding of the interven-

tions’ effectiveness, the dynamics of interruption management, and how these factors

interact in real-life scenarios.

Thirdly, while this study primarily focused on cognitive and behavioral strategies,

the potential role of technological solutions in supporting interruption management

remains an exciting frontier for exploration. Future research could delve into the

interplay between human cognitive resilience training and technological aids, such

as AI-driven task management systems or context-aware interruption management

software. Understanding how these technologies can complement human strategies

may pave the way for a synergistic approach to managing interruptions, combining

the strengths of human adaptability and technological precision.

Lastly, the generalizability of the training’s effectiveness across diverse demo-

graphic groups and professional backgrounds is a critical consideration. The responses

to and benefits from the training interventions may vary based on factors such as age,

cultural background, or field of expertise. Future research should focus on a more

inclusive and varied participant pool, enabling a comprehensive analysis of how dif-

ferent individuals or groups respond to the training. This direction could lead to

the development of more personalized, inclusive, and effective intervention strategies,
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catering to the unique needs and characteristics of various populations.

While this study lays a solid foundation for understanding and improving interrup-

tion management through structured training, there is a wealth of opportunities for

future research to expand, refine, and apply these insights. By addressing the limita-

tions and exploring the suggested avenues, subsequent studies can continue to enrich

our understanding and enhance our capability to navigate and manage interruptions

in an increasingly complex and demanding world.

2.8 Summary

Chapter 2 has explored the domain of interruption management, presenting a body

of empirical evidence that elucidates the effectiveness of structured, practice-based

training interventions. These interventions have been shown to significantly enhance

individuals’ ability to manage interruptions, underlining the pivotal role of cognitive

resilience in today’s dynamic workplace environments.

We recognize that our exploration into interruption management and cognitive

resilience training has set the stage for further innovative applications. The method-

ologies and findings discussed here pave the way for more targeted and specialized

interventions, addressing the needs of diverse populations and operational contexts.

In Chapter 3, we extend the narrative of interruption management to a partic-

ularly pertinent and impactful domain: the potential of social robotics in providing

job-relevant interruptions training for an understudied population–individuals with

Autism Spectrum Disorders (ASD). Given the unique challenges faced by individ-
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uals with ASD, particularly in navigating workplace distractions, unpredictability,

and social interactions, this next chapter delves into how the principles and findings

from the structured, practice-based training explored in Chapter 2 can be applied

and tailored through the medium of social robotics. We examine the acceptance,

effectiveness, and transformative potential of social robotics in not just managing

but mastering workplace-relevant interruptions, aiming to enhance autonomy and

improve the quality of life for individuals with ASD.
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Chapter 3

Cultivating Workplace Adaptability
and Competence: The Role of Social
Robotics in Skills Training for Adults
with ASD

Much of the material presented in this chapter is derived from a previously published

paper.1

In the contemporary workplace, proficiently managing interruptions is not merely

a commendable skill but an essential pillar for career success and adaptability. This

truth holds even greater weight for individuals with Autism Spectrum Disorders

(ASD). Confronted with a spectrum of social and communicative challenges, these

individuals often perceive the dynamic and unpredictable nature of workplace en-

vironments as particularly overwhelming (American Psychiatric Association, 2022).

Further, Johnson et al. (2020) reveal that adults with ASD excel when engaged with

technology-based interventions specifically designed for their distinct learning profiles.

These interventions are crucial for honing vital work-related skills, demonstrating the

significant advantages of customizing support to match the individual cognitive ca-
1See Ramnauth et al. (2022) for more details.
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pabilities and preferences of those with ASD. This chapter explores the synergy be-

tween social robotics and career development, spotlighting the role of an innovative

autonomous robot system, the Interruptions Skills Training and Assessment Robot

(ISTAR). ISTAR offers essential job-relevant interruptions training tailored for this

frequently overlooked demographic.

While the integration of social robots in therapeutic and training frameworks is

not a novel concept, harnessing this technology to address the specific employability

hurdles encountered by adults with ASD has only been investigated by a few (Bruyère

et al., 2020). Our exploration is driven by the critical imperative to bridge the divide

between the intrinsic abilities of individuals with ASD and the intricate demands of

contemporary workplaces. Amidst the rising prevalence of ASD, the stark contrast

in employment rates for this group signals a pressing call for interventions. Such

initiatives are imperative to endow these individuals with the requisite competencies

to not only navigate but also flourish in professional environments.

3.1 Background

Employability transcends the mere acquisition of a job; it embodies the capacity

to maintain employment, excel in a role, and adapt to the evolving demands and

multifaceted challenges that the workplace presents. For individuals with ASD, the

hurdle often lies not in a lack of technical skills or intelligence but in navigating the

social and adaptive nuances crucial in today’s collaborative and dynamic work envi-

ronments. Interruptions, a ubiquitous element in professional settings, can manifest
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as anything from a colleague’s query to an abrupt shift in task priorities. While

these disruptions are generally manageable for most, they can be profoundly disori-

enting for individuals with ASD, potentially leading to significant stress, decreased

productivity, and even job loss (Wei et al., 2018; Harmuth et al., 2018).

3.1.1 Job Skills Training for Adults with ASD

The challenge of handling interruptions is particularly pronounced for individuals with

ASD, where the social skills deficits common among many exacerbate the impact of

workplace distractions, unpredictability, and uncertainty (Kenyon, 2015). Address-

ing this complex issue requires a multifaceted approach that includes customized,

long-term supports and accommodations within nurturing communities and informed

workplaces, contributing to successful employment outcomes for individuals with ASD

(Harmuth et al., 2018).

Effective strategies for gainful employment among individuals with ASD encom-

pass onsite training that incorporates environmental assessments to identify and re-

duce distractions, as well as personalized, job-specific training that focuses on manag-

ing interruptive tasks (Hendricks, 2010). Unlike other technologies, a robot’s physical

presence in training scenarios commands attention and promotes engagement, offer-

ing a tangible, interactive experience that makes it difficult for users to ignore or

silence its prompts for interaction (McKenna et al., 2020; Scassellati, 2007).

Socially Assistive Robots (SARs), a specialized subset of social robotics, merge

traditional robotics with computational methods to provide personalized, socially sit-
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uated, and physically co-present interactions, making SARs particularly suited for

individuals with ASD (Matarić and Scassellati, 2016). The design and application of

SARs, ensure that these robots are not just passive tools but active participants in

the training process, capable of adjusting their behavior and feedback to meet the

individual’s unique learning pace and style. This approach underscores the signifi-

cance of social interaction and engagement in the training process, aligning with the

overarching goals of ISTAR to provide effective, user-friendly, and socially attuned

training for individuals with ASD.

3.1.2 Improving Tolerance to Interruptions Through Practice-

Based Training

Empirical evidence supports the notion that practice-based training with interrup-

tions can significantly benefit individuals (Zish et al., 2020; Hodgetts and Jones, 2006;

Cades et al., 2011). Key metrics such as resumption lag – the time needed to men-

tally regroup and return to the primary task post-interruption (Altmann and Trafton,

2004) – and interruption lag – the time taken to address the interrupting task – are

instrumental in assessing the impact of such training. Studies indicate that repeated

exposure to interruptions, coupled with task-specific training, can effectively reduce

these lags, thereby enhancing overall task performance (Cades et al., 2011). The in-

teraction between individuals with ASD and embodied artificial agents is increasingly

evidenced to promote prosocial behaviors, sustain attention, induce spontaneous and

socially appropriate responses, diminish stereotyped behaviors, optimize cognitive
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learning, and enhance social engagement (Diehl et al., 2012; Srinivasan et al., 2015;

Robins et al., 2012; Scassellati et al., 2012; Pennisi et al., 2016).

3.2 Research Aim and Theoretical Framework

We leverage a theoretical framework that primarily revolves around the concept of so-

cial robotics as a potent medium for delivering specialized training tailored to individ-

uals with unique learning needs, particularly those with Autism Spectrum Disorders

(ASD). It is grounded in the belief that every individual’s learning and developmental

needs are unique, especially for those with ASD, and advocates for personalized, user-

centric approaches in designing and deploying assistive technologies like social robots.

Further, we posit that properly designed social robots can go beyond the traditional

boundaries of therapy and skill development. This implies that such robots can of-

fer more engaging, intuitive, and effective ways to enhance social and professional

competencies among individuals with ASD.

This research hypothesizes that a robot can complement existing skill develop-

ment approaches to the significant betterment of individuals with ASD. The primary

objectives, therefore, center on the development, refinement, and evaluation of such

a system:

1. Design and Iterative Refinement of ISTAR: To architect and continually

refine ISTAR’s features, ensuring that its operations are marked by responsive-

ness, autonomy, and a deep alignment with user preferences. This objective

is pivotal in creating a system that is not only technically proficient but also
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empathetically attuned to the users’ unique contexts and needs.

2. Evaluating Acceptance and Impact: To critically assess how adults with

ASD receive ISTAR and to evaluate its efficacy in improving their ability to

manage job-related interruptions. This involves a comprehensive analysis of

user engagement, satisfaction, and the system’s practical impact on enhancing

workplace competencies.

3. Exploring Broader Implications: To delve into the wider implications of

deploying social robotics in enhancing employability and life quality for indi-

viduals with ASD. This objective seeks to uncover the potential ripple effects

of such technological interventions in fostering inclusivity and empowerment in

professional and social settings.

This chapter describes the process of conceptualizing, developing, and evaluating a

technological solution.

3.3 Methodological Approach

To improve tolerance to real-world interruptions, the system should provide workplace-

relevant interruptions training through role-playing. With efficient and relevant train-

ing, we expect users will improve their tolerance for workplace interruptions where,

over time, the interruptions will become less disruptive, allowing them to return to

their primary task quickly. ISTAR is designed not just as a tool but as a compan-

ion that situated in the personal spaces of individuals with ASD to provide tailored,
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realistic, and engaging training. The development of ISTAR is grounded in a deep un-

derstanding of the unique needs and preferences of adults with ASD, ensuring that the

technology is not just effective but also acceptable and comfortable for the end-users.

Hence, the development and assessment of ISTAR followed a user-centered method-

ology, involving a multi-stage process that prioritized the feedback and preferences of

the end-users – adults with ASD. The methodology was structured to ensure that the

system was not only technically sound but also socially and contextually relevant.

3.3.1 Needs Assessment and Conceptualization:

In the initial phase, a series of consultations were conducted with occupational thera-

pists, psychologists specializing in ASD, and, crucially, adults with ASD themselves.

The aim of these sessions was to understand the specific challenges experience by

adults with ASD. The insights gained from these consultations were instrumental in

shaping the design objectives for ISTAR, ensuring that the system aligns closely with

the real-world needs of its users.

The design of ISTAR is centered around four primary goals, each grounded in the

feedback and observations from these initial consultations:

1. Embodied: ISTAR is conceived as an embodied system, taking the form of

a social robot. This embodiment is critical as it has been shown to produce

measurable learning outcomes (Leyzberg et al., 2012), enhance training compli-

ance (Bainbridge et al., 2008), and facilitate the expression of realistic, socially

appropriate cues that foster suitable responses from users (Fiore et al., 2013).
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2. In-the-Home: The system is designed to operate within the user’s home.

This home-based approach not only circumvents potential workplace stigma

but also eliminates the need for users to disclose their diagnosis at work. Unlike

systems designed for clinical or laboratory environments where conditions are

controlled (McKenna et al., 2020; Belpaeme et al., 2018), ISTAR is tailored

to the dynamic and unstructured nature of home environments, necessitating

sophisticated sensing capabilities and behavioral decision-making.

3. Autonomous: ISTAR is developed to function autonomously, negating the

need for continuous technical oversight or control post-deployment. This auton-

omy ensures that the system can independently manage its operations, making

it user-friendly and accessible for individuals without technical expertise.

4. Realistic: The system is programmed to simulate interactions that closely

mirror real workplace interruptions, responding in real-time with human-like

behaviors such as naturalistic gaze, movement, and speech. This realism is

paramount to ensure that the training is relevant, engaging, and effectively

prepares users for actual workplace scenarios.

Leveraging the valuable feedback from the needs assessment phase, a conceptual

model of ISTAR was formulated. This model prioritizes intuitive interaction, adapt-

ability to the unique profiles of individual users, and the capacity to emulate realistic

workplace interruptions, thereby laying a strong foundation for the subsequent phases

of design and development.
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3.3.2 Design and Development

The transition from a conceptual model to a tangible, functioning system was or-

chestrated by a multidisciplinary team consisting of engineers, user experience (UX)

designers, and ASD specialists. This collaborative synergy was pivotal in materializ-

ing the vision of ISTAR. Central to this phase was the principle of iterative design,

ensuring that the development process was dynamic and responsive. Prototypes un-

derwent continuous refinement, guided by a dual focus on user feedback and technical

evaluations. This iterative approach was instrumental in achieving a balance between

technical robustness and user-centric design.

3.3.3 Interaction

A significant emphasis during the design process was placed on the aesthetic and

sensory attributes of the robot. Recognizing the diverse sensory sensitivities among

users with ASD (Robertson and Simmons, 2013), the team ensured ISTAR’s physical

presence was comforting and non-intrusive. This consideration was critical in fostering

a user-friendly interface and ensuring that the robot was perceived as a supportive,

rather than overwhelming, presence in the home environment.

ISTAR’s primary function is to serve as an in-home interruptions training robot.

Its design encourages frequent, yet succinct, interactions, engineered to capture and

retain the user’s attention. These interactions are crafted to simulate the dynamics

of real-world interruptions, thereby providing a practical and immersive training ex-

perience. Post-interaction, users are subtly prompted to exercise their resilience to
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Figure 3.1: ISTAR interruptions: (A) the participant is occupied with a primary task
while the robot is performing idling behavior; (B) the robot interrupts the user by asking
a work-related question; (C) the user responds to the robot’s interruption; (D) the robot
thanks the user for their response; finally, (E) the user resumes their original task. We define
two metrics to measure resiliency to an interruption: interruption lag and resumption lag.
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interruptions by seamlessly transitioning back to their original tasks, a process that

is crucial in building interruption management skills.

To elucidate the interaction dynamics of ISTAR, consider the following illustra-

tive scenario (refer to Figure 3.1): The user is engrossed in a primary task, such as

reading, with ISTAR positioned unobtrusively on the desk. ISTAR is programmed

to detect the presence of the user within its camera’s field of view before initiating

an interaction. Frame A captures the user deeply focused on the reading task. In

Frame B, ISTAR introduces an interruption by posing a question, effectively cap-

turing the user’s attention. Frame C depicts the moment the user diverts his focus

from the reading task to engage with ISTAR, marking the interruption lag — the

interval between ISTAR’s initiation of the interruption and the user’s shift in atten-

tion. Following the interaction, as shown in Frame D, ISTAR acknowledges the user’s

response and reverts to a state of inactivity. Frame E captures the conclusion of the

interaction, with ISTAR returning to its idle state and the user resuming the initial

task. The resumption lag, a critical metric in this training, is measured from the end

of the interruption to the point where the user fully re-engages with the original task.

ISTAR not only embodies the principles of socially assistive technology but also

provides a structured yet flexible framework for enhancing the interruption manage-

ment skills of individuals with ASD in the comfort and privacy of their homes.
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Figure 3.2: Prototype - A Jibo robot is attached to a wooden base. On the base are
microphones, a camera, and a toggle switch to power the system on or off. Inside the base
is a computer, a battery, a network router, and a cooling fan.

3.3.4 Hardware

Our initial testable system integrated six primary hardware components, as depicted

in Figure 3.2. Central to this ensemble is the Jibo robot, standing at 11 inches tall

and featuring 3 full-revolute axes for fluid 360-degree movement (MIT Media Lab,

2024). Jibo’s sophisticated hardware capabilities enable the programming of

personified behaviors, such as naturalistic gaze and movement, crucial for creating

lifelike, engaging interactions. Accompanying Jibo is a compact PC, the operational

hub of the system. This unit not only facilitates communication with other hard-
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ware components but also monitors the system’s overall performance and acts as the

local repository for data storage during our in-home system evaluations. Feedback

from preliminary survey evaluations conducted with adults with ASD and employers

underscored the need for interruptions that elicit a physical response. Consequently,

a numeric keypad was integrated to enable interactions requiring users to perform a

mental task and input their responses.

Both Jibo and the keypad are securely mounted atop a plastic case, which houses

the PC and all ancillary hardware components essential for ISTAR’s operation. These

components, though not directly interacted with by the user, underpin the function-

ality of the entire system.

For the requisite in-home sensing, an Azure Kinect DK (Development Kit) camera

is positioned on a mast, located just behind and slightly above Jibo’s head (Microsoft

Corporation, 2019). This placement optimizes the camera’s field of vision, providing

greater environmental awareness. The Kinect’s built-in microphone array is used to

capturing audio during training sessions.

Recognizing the importance of a self-reliant system, each ISTAR unit is equipped

with a mobile router, complete with a prepaid internet service plan. This setup guar-

antees a continuous WiFi connection, enabling automatic cloud-based data synchro-

nization and facilitating remote system control for troubleshooting and monitoring

purposes during in-home evaluations. Additionally, an uninterruptible battery power

supply is included, serving as ISTAR’s primary charging station and enhancing sys-

tem resilience. As a result of these design choices, ISTAR is a plug-and-play system,

requiring nothing more than a connection to a power outlet in the user’s home. The
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Figure 3.3: Deployable Ensemble - A Jibo robot is attached to a sturdy thermoplastic
polymer base box. Also on the base is an Azure Kinect mounted on a mast, and a nu-
meric keypad. Inside the base is a computer, an uninterruptible power supply with surge
protection, a network router, and a cooling fan.

system’s design prioritizes self-reliance and self-containment. Adhering to principles

of ergonomic and accessible design, the apparent complexity for the user is minimized

by encasing non-interfaceable components within the container which supports both

the robot and the external camera. This approach not only streamlines the user’s in-

teraction with the system but also significantly reduces the perceived complexity from

the participant’s perspective. The final iteration of the system, ready for deployment

in the user’s home, is illustrated in Figure 3.3.
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3.3.5 Software

In crafting the ISTAR system, a modular software architecture was employed, ensur-

ing that individual components of the system could be independently updated and

refined. This modularity was achieved by structuring the software components as

nodes within the Robot Operating System (ROS) (Open Source Robotics Founda-

tion, 2007), a flexible framework that facilitates the development of complex robotic

behaviors.

A crucial component in this architecture is the scheduling node. This node is

responsible for deciding when the system should capture an image using the Azure

Kinect. Captured images serve as input to a pre-trained YOLO (You Only Look

Once) neural network (Redmon and Farhadi, 2018), which is utilized to estimate the

number of people within the system’s field of view. The decision-making process is

straightforward yet contextually aware: if the system detects fewer than two people,

it proceeds to deliver an interruption. Conversely, if two or more people are detected,

ISTAR assumes that it may not be a socially appropriate moment for an interrup-

tion and thus abstains from initiating one. Nevertheless, the system is designed to

maintain a consistent frequency of interruptions over a designated time window. This

is achieved by incrementally adjusting the intervals between interruptions, ensuring

that the user experiences the planned number of interactions. These intervals are

determined based on a Gaussian distribution, intentionally introducing variability to

preclude the user from anticipating subsequent interruptions.

When ISTAR is in a passive state, Jibo adopts a subtle, non-intrusive posture, with
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its gaze directed towards the floor. Upon being activated to deliver an interruption,

Jibo shifts its gaze upwards and plays a pre-recorded audio file of the interruption

through its speakers, engaging the user’s attention. For interruptions that necessitate

a verbal response, the system patiently awaits the user’s reply. The spoken response

is captured and relayed to the Google Speech-to-Text API for transcription, allowing

the user’s input to be documented. If the user does not respond within a ten-second

window, Jibo gently reprompts the original question, ensuring that the interaction

remains engaging and that the user’s training is continuous. Once the user’s response

is received, Jibo acknowledges their participation with a word of thanks and then

returns to its idle state, silently looking at the floor.

3.4 Evaluation

The evaluation of ISTAR was designed to be comprehensive, targeting not just the

system’s functionality and usability, but also delving into the subjective experiences

and perceptions of the users.

3.4.1 Evaluation 1: Surveys of the Prototype

To gauge initial user acceptance and gather actionable feedback for system refinement,

surveys were conducted with adults with ASD and their employers. This preliminary

step was crucial in fine-tuning the system prior to the more extensive in-home evalu-

ations.

Participants were shown three videos, each depicting ISTAR in action, interrupt-
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ing users engaged in different everyday activities. The scenarios included ISTAR

interrupting a user:

1. Playing video games to inquire about a potential shift change at work.

2. Watching a sports game on TV to remind about a work report deadline.

3. Washing dishes to ask for assistance in locating an item in a grocery store.

Respondents assessed various aspects of these demonstrations, evaluating the nature

of the interruptions, the robot’s behavior, and the overall quality of the interaction.

Furthermore, they were queried about their willingness to use such a system and how

they envisioned incorporating it into their daily routines

3.4.2 Understanding User and Employer Perspectives

The survey garnered responses from 35 adults diagnosed with ASD and 13 employers

of individuals with ASD, providing a diverse perspective on the workplace challenges

and the potential impact of ISTAR.

Surveys of Adults with ASD

The demographic composition of the adult participants with ASD was as follows: 89%

were students, 31% were employed, 26% were unemployed, and 17% were actively

seeking employment. The remaining student-respondents were not currently engaged

in the job market. Among the employed adults with ASD (N=11), the most commonly

reported workplace distractions included:
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1. Interruptions by colleagues on non-work-related matters (73%),

2. Interruptions by supervisors on non-work-related matters (55%),

3. Environmental noise, such as traffic outside the workplace (73%).

In assessing the resemblance of ISTAR’s interruptions to those encountered in actual

workplace settings, the responses from the participants indicated a spectrum of per-

ceptions: 23% found them to be similar, 50% viewed them as somewhat similar, 28%

found them to be different. This variance underscores the subjective nature of how

workplace interruptions are experienced and the potential for ISTAR’s training to be

adjusted to more closely mirror real-world scenarios.

Surveys of Employers

A notable 80% of employers observed a distinct approach in how adults with ASD

handle workplace interruptions compared to their neurotypical colleagues. Employers

particularly pointed out the challenges in concentrating or returning to the primary

task, with many individuals with ASD reportedly developing specific strategies to

manage or refocus on their tasks. The employers identified the most common sources

of workplace distractions as:

1. Environmental noise (77%),

2. Interruptions by colleagues on non-work-related matters (69%).

These findings illuminate the particular challenges that adults with ASD face in

workplace environments and the nature of distractions that are most prevalent. The
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survey results are invaluable, providing critical insights into the effectiveness and

relevance of ISTAR’s interventions. They also highlight the importance of tailoring

the system to meet the specific needs and experiences of its users, thereby enhancing

its potential impact and efficacy in real-world settings. The feedback gathered serves

as a vital guide for the ongoing development and refinement of ISTAR, ensuring that

the system remains closely aligned with the actual requirements and conditions of the

workplace for individuals with ASD.

3.4.3 Evaluation 2: In-Home Deployments:

To comprehensively evaluate ISTAR, a week-long in-home deployment phase was

initiated, allowing participants to interact with the system within the familiarity of

their living spaces.

The true measure of the system’s impact lies in its integration into the homes of

adults with ASD. While recognizing that lasting behavioral modifications resulting

from the training might necessitate an extended period (Lally et al., 2010), this phase

primarily aimed to assess initial acceptance and continuous interaction with ISTAR’s

training prompts across a one-week span. The insights gleaned from this evaluation

would lay the groundwork for potential longer-term deployments, aiming to observe

sustained behavioral improvements in the users.

Participants of In-Home Deployments

The in-home deployment phase of the study engaged twelve adults diagnosed with

ASD. However, due to unrelated personal circumstances exacerbated by the contem-
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poraneous pandemic, two participants withdrew, resulting in a final participant count

of ten. The demographic composition of the participants who completed the evalua-

tion included 8 males and 2 females, with ages ranging from 20 to 42 years (M = 26.3,

SD = 6.9). This distribution typifies the population based on the diagnostic category

(American Psychiatric Association, 2022).

Prior to the commencement of the evaluation, participants were asked to complete

a series of surveys designed to capture their educational background, employment

status, and their level of functioning in the context of ASD, as indicated by the

AQ-10 score (Vollmeyer and Rheinberg, 2000). They were also asked to articulate

their expectations regarding the training with ISTAR by utilizing the Flow in Work

Scale (FWS) Vollmeyer and Rheinberg (2000). Of the ten participants, nine were

able to complete the survey independently online, while one participant required the

assistance of a caregiver to navigate the survey website and submit their responses.

Employment status among the participants varied: two were employed, five were

unemployed but actively seeking employment, and three were not engaged in the job

market. Educational backgrounds were varied, with all participants having completed

at least secondary school and 80% having pursued higher education in college or

vocational training programs. The participant cohort was characterized as high-

functioning adults with ASD, with an average AQ-10 score of 4.6 (SD = 1.6).

When assessing their susceptibility to everyday distractions, participants rated

themselves on a 5-point Likert scale, where 1 signified not easily at all and 5 denoted

extremely easily. The average response indicated that participants were "somewhat

easily" distracted, with a mean score of 3.1 (SD = 1.17).
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Expectations and attitudes towards interacting with ISTAR, as measured by the

FWS, revealed a moderate optimism regarding the success probability, an interest

in the interaction, and an anticipation for the challenge it presented. Specifically,

the participants scored an average of 24.0 (SD = 5.89) on fluency of performance,

15.0 (SD = 4.38) on absorption of activity, and 13.0 (SD = 4.05) on perceived

fit of demand and skills. These scores reflect a balanced perspective, recognizing the

potential of the ISTAR training while acknowledging the inherent challenges it posed.

Data Collection

The data collection process was designed to capture a comprehensive dataset encom-

passing video and audio recordings of all training interactions. This dataset detailed

each interruption facilitated by ISTAR, the participants’ responses, and their activi-

ties before and after engaging with the interruption.

An annotation process was implemented for every interruption instance. Three

researchers utilized ELAN (Max Planck Institute for Psycholinguistics, 2002), to an-

notate key moments within each interaction: the time participants diverted their

gaze from their primary task following an interruption, their subsequent engagement

with the robot, their disengagement, and finally, their return to the initial task. To

ensure the reliability of the process, initial transcriptions underwent a double-check

for procedural consistency. Post-annotation, the inter-coder reliability was assessed

for a randomly selected subset, comprising 25% of all interruptions, annotated by

three coders. This step was crucial in addressing the potential ambiguity inherent

in interpreting participant behavior within the unstructured home environment. The
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intraclass correlation coefficient scores were remarkably high, registering at 0.95 for

the interruption lag (the duration to shift attention to the robot post-interruption)

and 0.90 for the resumption lag (the duration to revert attention to the primary task

post-interruption).

Additionally, objective characteristics of the participants’ interactions were docu-

mented through a survey conducted by a research team member. These transcriptions

evaluated aspects such as the length of verbal responses to ISTAR, whether partici-

pants returned to their original task or shifted to a new task post-interruption, and

the social or physical intensity of tasks both pre- and post-interruption. Given the

objective nature of these questions, a binary response format was adopted, rendering

the computation of agreement or the necessity for multiple annotators redundant.

Results of In-Home Deployments

Throughout the evaluation period, ISTAR administered a total of 841 interruptions.

Of these, 12% were excluded from the analysis as the participants were not present

in the room to experience them. On average, each participant was exposed to 73.2

interruptions in total, translating to approximately 12.9 (SD = 3.4) interruptions per

training session.

In a workplace context, the appropriate handling of interruptions varies by type.

For environmental interruptions, successful management is defined as the ability to

continue one’s task with minimal disruption. For social interruptions, it is expected

that an employee will momentarily pause their task, establish eye contact with the

interrupter, and thoroughly address the query before resuming their original task.
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In the case of task interruptions, while a verbal response may not be imperative, a

complete and pertinent response is crucial. A key indicator of the training’s effective-

ness is the reduction in both interruption and resumption lags, suggesting enhanced

proficiency in task-switching and interruption management.

Handling Different Types of Interruptions

According to these predefined criteria:

1. Participants appropriately managed 40% of all environmental interruptions en-

countered (N = 237),

2. Demonstrated a 98% appropriate response rate to social interruptions (N =

250),

3. Exhibited a 99% appropriate response rate to task interruptions (N = 245).

It was noted that participants engaged in socially appropriate behaviors, such as

maintaining eye contact or pausing their tasks to address the interruption, in response

to 99% of social and task interruptions. Interestingly, such social behaviors were also

observed in 60% of environmental interruptions. A multiple linear regression aimed at

predicting interruption lag identified significant influences of the type of interruption

(β = 2.37, p ≤ 0.001), AQ-10 score (β = 0.45, p ≤ 0.001), and cumulative number of

interruptions experienced during training (β = −0.01, p = 0.01). The coefficients are

denoted as β. The notable reduction in interruption lag as the training progressed

underscores the system’s efficacy in fostering quicker engagement with interruptions

over time.
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Similarly, a regression analysis to predict resumption lag pinpointed significant

factors including the type of interruption (β = −11.1, p ≤ 0.001) and AQ-10 score

(β = −1.02, p ≤ 0.001). When comparing the disruption caused by each type of

interruption, measured in seconds (s), it was found that:

1. Interruption lags were notably shorter for environmental interruptions (M =

2.24s, SD = 4.02s) compared to social (M = 3.18s, SD = 3.45s) and task

interruptions (M = 4.66s, SD = 4.44s).

2. The interruption lags for social interruptions were also significantly shorter than

those for task interruptions.

In terms of resumption lag:

1. Participants took significantly longer to resume their tasks after environmental

interruptions (M = 15.86s, SD = 13.10s) compared to social (M = 4.57s,

SD = 6.82s) and task interruptions (M = 7.47s, SD = 6.89s).

2. The resumption lags for task interruptions were also notably longer than those

for social interruptions.

These results not only offer an understanding of how participants interacted with IS-

TAR but also highlight the system’s potential in improving the management of various

types of interruptions, a critical skill in the workplace for individuals with ASD. The

findings, particularly the variations in interruption and resumption lags across differ-

ent interruption types, provide valuable insights into the nature of interruptions and

their impact on individuals with ASD.
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3.4.4 User Acceptance and Perceived Relevance

Upon concluding their participation, individuals offered their perspectives on ISTAR

by engaging in an online survey and interview, allowing for a comprehensive assess-

ment of their experiences.

Participants employed the Robotic Social Attributes Scale (RoSAS) (Carpinella

et al., 2017) to articulate their perception of ISTAR. The system was predominantly

viewed in a positive light, being described as warm, competent, and comfortable to

interact with (Ramnauth et al., 2022). Notably, terms such as social, responsive, inter-

active, capable, and organic frequently surfaced in participants’ descriptions, painting

a picture of ISTAR as an engaging and intelligent companion.

In evaluating ISTAR’s efficacy as a training tool, participants leveraged a 5-point

Likert scale, ranging from 1 (none at all) to 5 (a great deal), to reflect on how the

training influenced their tolerance for interruptions outside the training context. The

results indicated a positive impact, with an average score of 3.3 (SD = 1.3), sug-

gesting that ISTAR’s training sessions extended their benefits beyond the immediate

interactions.

Personal anecdotes shared during interviews further illuminated the practical value

of training with ISTAR. Participants looking for employment appreciated the system’s

role in preparing them for real-world interruptions, helping them prioritize tasks and

retain focus amidst potential distractions. One participant acknowledged ISTAR’s

contribution to their current job, noting improved efficiency in resuming work post-

interruptions. Interestingly, the training also prompted introspection among partic-
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ipants, with one individual reflecting on the nature and impact of the interruptions

they typically initiate in conversations.

The relevance of ISTAR’s training to managing real-world interruptions was also

quantified using a 5-point Likert scale, where 1 indicated not relevant and 5 denoted

extremely relevant. The participants’ feedback yielded a promising average score of

3.9 (SD = 0.93), reinforcing the system’s applicability and effectiveness in equipping

users with practical skills for handling interruptions in diverse settings.

These insights not only affirm the positive reception of ISTAR but also highlight its

potential as a transformative tool for enhancing social adaptability and interruption

management among adults with ASD. The feedback, encompassing both quantitative

assessments and qualitative experiences, underscores the system’s potential to make

a meaningful difference in the lives of its users.

3.5 Reflective Analysis and Implications of ISTAR’s

Deployment

We evaluated ISTAR’s design was assessed against our outlined design goals, with

additional insights drawn from the participants’ perceptions and experiences.

Embodied Interaction: ISTAR’s embodiment as a social robot proved to be a

significant factor in engaging users more effectively than other forms of technology.

Participants’ feedback, coupled with the observations from the RoSAS evaluations,

highlighted ISTAR’s naturalistic gaze patterns and body movements, which facilitated
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meaningful social interaction and practice. The positive remarks from caregivers

about the system’s physical presence and its ability to ‘spark’ engagement in users

underscore the profound impact of ISTAR’s embodiment.

In-Home Accessibility: The system’s design as an in-home intervention al-

lowed users to interact with ISTAR intuitively and comfortably. The survey results

confirmed that users felt at ease with ISTAR in their personal spaces, with many

perceiving the robot as friendly and approachable. This level of comfort was fur-

ther evidenced by users’ willingness to showcase ISTAR to friends, demonstrating the

system’s successful integration into their daily lives.

Autonomous Operation: ISTAR’s ability to operate autonomously over ex-

tended periods, delivering numerous training sessions, is a testament to the effective-

ness of its computational mechanisms. The system’s design, particularly its intuitive

setup and usage, was crucial during the pandemic, enabling deployment without di-

rect contact, thus ensuring safety and convenience for users and researchers alike.

Realistic Interactions: The varied nature of ISTAR’s interruptions, encompass-

ing environmental, social, and task-related scenarios, aligned well with the real-world

experiences of participants. Feedback from adults with ASD and employers suggested

that the system’s interruptions were representative of actual workplace scenarios. The

positive reports from employed participants about improved interruption handling in

their jobs validate the practical utility and relevance of ISTAR’s training.

Participants’ reflections on their experiences with ISTAR, as captured in the post-

study surveys and interviews, further affirm the system’s effectiveness. Reports of

improved tolerance to interruptions, enhanced task prioritization, and increased self-
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awareness regarding one’s interruptive behavior highlight the multifaceted impact

of ISTAR. The high scores on the relevance of ISTAR’s training, coupled with the

significant behavioral improvements observed in interruption and resumption lags, un-

derscore the system’s potential as an effective intervention for enhancing interruption

management skills among adults with ASD.

While the study’s duration was relatively short, the notable progress observed

in participants’ interruption handling abilities suggests that ISTAR holds promise

for longer-term behavioral changes. As an early exploration in the field of in-home

social robotics for adults with ASD, this study sets a solid foundation for future

research. A more extended study involving a larger sample will be instrumental

in evaluating the long-term efficacy of ISTAR and its generalizability to broader

workplace environments or human-human interactions.

In sum, interactions with ISTAR have proven to be productive and potentially

transformative, marking a significant stride in the use of socially assistive robotics

to improve the quality of life and employability of individuals with ASD. The sys-

tem’s success in meeting its design goals, combined with the positive reception and

impactful experiences reported by participants, signals a promising path forward for

the development and application of similar interventions.

3.6 Challenges and Lessons Learned

The journey of developing and implementing ISTAR also presented its share of chal-

lenges. Reflecting on these challenges is not only an exercise in transparency but also
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a valuable source of lessons for future initiatives in social robotics and ASD-focused

interventions.

Customization and Flexibility: One of the foremost challenges was accommo-

dating the diverse needs, preferences, and sensitivities inherent to the ASD spectrum.

Recognizing that ASD manifests uniquely in each individual, the project highlighted

the necessity for customization and flexibility in the design of ISTAR. Ensuring that

the robot could dynamically adjust its behavior in response to user feedback and vary-

ing levels of engagement was instrumental in sustaining user interest and enhancing

the efficacy of the learning experience.

Embedding Technology in Human Spaces: The integration of ISTAR into

the intimate and personal realms of users’ lives necessitated a careful balance between

technological innovation and a human-centric approach. It was paramount that the

robot was perceived not as an intrusive mechanical entity but as a supportive and

empathetic presence. This endeavor brought to light the intricacies of human-robot

interaction, particularly the significance of non-verbal cues, thoughtful physical de-

sign, and the appropriate tone and timing of robotic interventions.

Ethical Considerations: Deploying ISTAR brought forth crucial ethical con-

siderations, notably in terms of ensuring user privacy, safeguarding data security,

and respecting the autonomy of the participants. The project served as a reminder

of the importance of integrating ethical deliberations into every facet of the design

and deployment process, with the well-being and rights of the participants being the

paramount concern.
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3.7 Future Directions

The ISTAR project opens a multitude of possibilities for future research and devel-

opment in the intersection of social robotics and ASD.

Longitudinal Studies: There is a compelling need for longitudinal studies to

evaluate the enduring impacts of social robot-based training on individuals with ASD.

Such studies would be instrumental in understanding the sustainability of the skills

imparted and their applicability in real-life situations.

Scalability and Accessibility: A critical direction for future work involves

addressing the scalability and accessibility of social robots like ISTAR. Efforts should

focus on reducing costs, simplifying the technology for a broader user base, and

ensuring that these life-enhancing interventions are within reach for a wider segment

of the population.

Broader Application Scenarios: While ISTAR’s current application centers

around managing workplace interruptions, the potential of social robotics in aiding

individuals with ASD extends far beyond. Future endeavors could branch into various

domains, such as enhancing social skills, facilitating independent living, or enriching

leisure and recreational experiences.

3.8 Summary

Chapter 3 has provided a thorough investigation into the potential of social robotics to

significantly enhance the employability and daily living conditions of individuals with

ASD. The journey embarked upon with ISTAR, spanning from its initial conception
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through to its evaluation, has illuminated the capacity inherent in merging advanced

technological solutions with an understanding of user-specific needs. The system’s

favorable reception, coupled with the tangible improvements witnessed in the par-

ticipants’ abilities to navigate workplace interruptions, underscores the success and

efficacy of this innovative approach.

Looking ahead, the convergence of social robotics and autism intervention emerges

as an promising frontier. The valuable insights garnered from this project extend

beyond the academic realm, offering actionable strategies for the development of

inclusive and supportive technologies.

Our next step to explore the applicability and efficacy of social robotics in manag-

ing interruptions across a broader and more varied population, extending beyond the

confines of the home environment. Chapter 4 will delve into the detailed exploration

of this expanded study.
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Chapter 4

Advancing Robotics in Technical
Education: Enhancing Performance
and Learning Outcomes Under
Interruptions with Interactive
Methods

Chapter 4 of this dissertation delves into an exploration of the impact of robot as-

sistance in a simulated workspace, specifically focusing on task efficiency, responses

to interruptions, task resumption, and error reduction in task performance. Building

upon the foundation laid in the previous chapters, this chapter extends the investi-

gation of robotic intervention from home environments, as discussed in Chapter 3,

to more complex and dynamic tasks. The central hypothesis is that robot assistance

can significantly enhance the efficiency and accuracy of task performance, especially

in environments characterized by frequent interruptions.

The chapter begins by establishing the relevance of studying robotic assistance

in academic settings. It outlines the challenges faced by learners and educators in

maintaining task efficiency and managing interruptions, which are commonplace in
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educational environments. The chapter includes a description of the experimental

setup, which integrates advanced technologies such as an interactive mock HVAC

workspace (Heating, Ventilation, and Air Conditioning system), a Tutorial and Guide

application, and, most importantly, a robot assistant designed to facilitate and guide

technical tasks.

Central to this chapter is the examination of several key hypotheses. First, we hy-

pothesize that robot assistance leads to improved task efficiency by providing timely

guidance and support, enabling learners to complete tasks more quickly and effec-

tively. Second, the study tests the hypothesis that robotic intervention positively

influences interruption responses, aiding learners in maintaining focus and reducing

the cognitive load associated with task switching. Third, we assess the impact of

robot assistance on the resumption of original tasks following interruptions, hypoth-

esizing that robotic cues and guidance lead to a more seamless transition back to the

initial task. Lastly, the chapter investigates whether the presence of a robot assistant

contributes to a reduction in errors during task performance, thereby enhancing the

overall quality of the learning experience.

By examining the role of robot assistance in an educational setting, this chapter

aims to evaluate the potential of robotics in enhancing learning experiences, task

efficiency, and the management of interruptions in technical education.
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4.1 Background

In modern educational landscapes, where students are increasingly interacting with

a multitude of technologies, robotics engages students in the practical aspects of

building and programming, and significantly contributes to the cultivation of essen-

tial competencies (Belpaeme et al., 2018). These include computational thinking,

engineering skills, logical-mathematical reasoning, problem-solving capabilities, and

scientific inquiry. The tangible and interactive nature of robotic platforms amplifies

student engagement and motivation, thereby deepening the immersion and efficacy

of the learning process (Zenk et al., 2017).

Moreover, the role of robotics promotes interdisciplinary knowledge and augments

critical skills such as creativity, collaboration, communication, and autonomy. The

value of co-creative task transfer in robotics suggests a promising avenue for innovative

educational practices that leverage robotics to improve learning outcomes in techni-

cal education (Fitzgerald et al., 2017). This multifaceted impact renders robotics a

resource not only for mainstream education but also for addressing the needs of stu-

dents requiring specialized educational support. Consequently, educational robotics

is progressively being woven into the fabric of pedagogical tools and methodologies,

positioning itself as an integral part in the orchestration of interdisciplinary learning

experiences (Irfan et al., 2021; Arocena et al., 2022).

The pedagogical strategies employed alongside robotics are diverse and tailored to

address various facets of the educational journey. These strategies span a spectrum

of methods including problem-based, constructivist, competition-based, discovery-
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focused, and project-based learning. This rich array of methodologies ensures a com-

prehensive approach to education, ranging from direct instructional methods to more

inductive, student-centered techniques that empower learners to leverage their knowl-

edge in practical, real-world scenarios (Quintero-Pena et al., 2023; Kubilinskienė et al.,

2017).

In the context of technical education, an understanding of the cognitive processes

underpinning learning is paramount for devising impactful educational interventions.

Theories related to cognitive load, attention, memory, and interruption management

are important in this discourse, especially considering the influence of diverse learning

environments and technological integration. The concept of cognitive load is espe-

cially critical in technical domains, where learners frequently grapple with complex

information and tasks. Effective management of cognitive load is essential for opti-

mizing learning outcomes and is influenced by the integration of technology, such as

robotics. This technology can either introduce an additional layer of complexity or

serve as a medium for simplifying and clarifying information processing (Alam, 2022).

Interruptions, a prevalent feature of educational settings, significantly sway learn-

ing efficiency and task performance. Students may expedite the completion of pri-

mary tasks if they perceive an excessive amount of time spent on interruptive tasks

(Brumby et al., 2013; Speier et al., 1999, 2003). This acceleration effect, while aiming

to compensate for lost time, is also reflective of an increase in the number of errors

(Brumby et al., 2013; Speier et al., 1999, 2003).

The management of interruptions, pivotal in maintaining cognitive continuity, is

explored through strategies involving cues and environmental modifications. In an
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electrical shop or workspace, the thoughtful arrangement of environmental cues sig-

nificantly enhances task efficiency and safety. Color-coded labels and organized tool

storage facilitate swift identification and retrieval of necessary equipment, minimizing

downtime between tasks. Visual safety warnings ensure that attention is immediately

drawn to potential hazards, fostering a secure working environment. Moreover, strate-

gically placed task checklists offer clear guidance on procedural steps, aiding in the

seamless transition between diverse tasks. Audible alarms serve as crucial alerts for

test completions or safety concerns, ensuring that focus is appropriately directed.

The potential integration of these strategies within collaborative and educational en-

vironments that include robots presents a promising avenue for mitigating disruptive

influences (Trafton et al., 2005).

Collectively, the integration of robots within learning processes underscores their

potential in not only managing interruptions but also in refining the overall quality

of the educational experience. This encompasses fostering task efficiency, reducing

errors, and nurturing skill mastery, ultimately leading to successful learning outcomes.

The rich affordances offered by robotics environments catalyze the application of

science literacy-based thinking and contribute substantially to a understanding of

systems (Sullivan and Bers, 2013; Salomons, 2022).

Within the sphere of technical education, the role of robot assistance is increas-

ingly clear, serving as a catalyst for an enriched educational paradigm. Robot-assisted

learning could aid in developing technical skills and enable the enhancement of the

learner’s ability to solve complex problems and understand systems. By interact-

ing with robots, students gain firsthand experience in system dynamics and oper-
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ations, fostering a deep, intuitive understanding of systems-thinking (Sullivan and

Bers, 2013). This hands-on engagement with robots not only solidifies theoretical

knowledge but also sharpens practical skills, essential for navigating the multifaceted

challenges of modern technical landscapes.

The impact of robotic assistance on technical skill acquisition is non-trivial. Through

structured interactions and guided learning experiences, robots act as facilitators,

transforming abstract concepts into tangible experiences. This transition from theory

to practice is instrumental in cultivating problem-solving abilities, enabling learners

to devise innovative solutions to real-world technical problems. Moreover, the in-

teractive nature of robots significantly heightens learner engagement, transforming

the educational journey into an immersive, captivating experience. This heightened

engagement is not merely about maintaining attention; it is about fostering a deep,

enduring interest in technical subjects, which is crucial for sustained learning and

skill development (Salomons et al., 2022).

However, the integration of robot assistants into technical training environments

is not without its challenges. Technical education is inherently complex, requiring an

understanding of both the theoretical underpinnings and practical applications of var-

ious concepts. Ensuring that robotic systems are sufficiently sophisticated to address

these complexities, while remaining accessible and user-friendly, is a delicate balance

to strike. Additionally, there is the challenge of seamlessly integrating these systems

into existing educational infrastructures, ensuring that they complement rather than

disrupt established learning processes. Despite these challenges, the potential benefits

of robot-assisted learning – enhanced understanding of systems, accelerated skill ac-
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quisition, error reduction, improved tasks performance efficiency, and elevated learner

engagement – position robotics to support interactive, experiential learning.

4.2 Research Aim and Theoretical Framework

The primary aim of this research is to explore the multifaceted impact of robot assis-

tance in enhancing the efficacy of technical education. Specifically, the research fo-

cuses on assessing the role of robotic systems in augmenting task efficiency, facilitating

interruption management, and reducing errors in technical training environments.

The theoretical framework underpinning this research is rooted in a multidisci-

plinary approach, integrating principles from educational psychology, cognitive sci-

ence, and robotics. A part of this framework is Cognitive Load Theory (CLT), which

provides essential insights into how educational robots can be optimized to enhance

learning by effectively managing the cognitive load of learners. This theory posits

that instructional design should be aligned with the human cognitive architecture,

and that excess cognitive load can impede the learning process (Ginns and Leppink,

2019).

Additionally, the framework incorporates the Theory of Constructivist Learning,

emphasizing the significance of hands-on, interactive experiences in fostering a deeper

understanding of complex technical systems and concepts (Bada and Olusegun, 2015).

This theory supports the idea that learners construct knowledge best through active

engagement and personal experience, principles that are well-aligned with the inter-

active nature of robot-assisted learning.

98



Furthermore, the framework acknowledges the pivotal role of Attentional Resource

Theory in understanding how learners allocate cognitive resources, especially in envi-

ronments characterized by frequent interruptions (Matthews et al., 2017). This aspect

is particularly crucial in technical education, where tasks often require sustained con-

centration and a high degree of precision (Bruya and Tang, 2018). By integrating

robotic systems capable of intelligent interruption management and context-aware

cueing, the research aims to explore how these technologies can optimize attention

allocation and minimize cognitive load, thereby enhancing learning outcomes (Bruya

and Tang, 2018).

In essence, this research is guided by a theoretical framework that seeks to merge

theoretical insights with practical applications. It aims to provide an understanding

of how robotic systems can be harnessed to create more effective, engaging, and

cognitively optimized learning environments in the field of technical education.

4.3 Methodological Approach

This research study integrates advanced robotic tools into the realm of technical

education, with a particular focus on HVAC system maintenance and troubleshooting

tasks. The methodological framework is designed to assess the impact of robotic

assistance on task performance and to refine a predictive model for evaluating HVAC

system maintenance and troubleshooting skills. The following sections detail the

components of our approach.
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Group
Robot 

Assists 
(Task 1)

Robot 
Assists 
(Task 2)

Complexity 
(Task 1)

Complexity 
(Task 2)

Task 1 Task 2

1 Yes No Simple Simple

Identify 
faulty 
Condenser 
Fan

Identify 
faulty 
Compressor

2 Yes No Complex Complex

Identify 
faulty Wire 
from 
Contactor 
Relay

Identify 
faulty DPDT 
Relay

3 No No Simple Simple

Identify 
faulty 
Condenser 
Fan

Identify 
faulty 
Compressor

4 No No Complex Complex

Identify 
faulty Wire 
from 
Contactor 
Relay

Identify 
faulty DPDT 
Relay

Figure 4.1: Overview of Study Design: 4 Groups with two tasks of equivalent complexities.

4.3.1 Study Design and Experimental Setup

We employ a controlled experimental design, ensuring reliability and validity through

a four-group structure based on two criteria: robotic assistance and task complex-

ity. The groups are categorized as follows: one with robotic assistance (experimental

group) and one without (control group), each further divided based on the complexity

of tasks. Each group tackles two troubleshooting tasks of similar complexity, allowing

for analysis of how task complexity and robotic assistance interact and affect perfor-

mance. Within the groups receiving robotic assistance, the robot aids only in the

first of the two troubleshooting tasks, as shown in table 4.1. This approach allows

for the evaluation of the impact of technology on learning, focusing on the robot’s

role in enhancing a human’s ability to observe, hypothesize, discover, and conclude.
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By comparing the performance on the first and second tasks within these groups,

against those without robotic assistance, we can examine the robot’s influence on

performance metrics.

Task complexity within our mock HVAC system is defined by the number of com-

ponents involved and their interactions, particularly in pinpointing causes of malfunc-

tions. Complex tasks encompass multiple layers of information, sequential steps, and

a deep understanding of how components interrelate. For instance, a simpler task like

replacing a blown light bulb clearly links the symptom (a non-functioning lamp) to

the problem (a faulty bulb). Conversely, more complex tasks often present ambigu-

ous or indirect malfunction indicators, obscuring the root cause. These tasks require

thorough analysis and the elimination of multiple potential causes. An example is

diagnosing the source of unusual noises in an HVAC system, which could stem from

a variety of issues, ranging from fan problems to loose components. Another instance

is determining the reasons behind reduced cooling efficiency, which might be due to

factors like duct leaks, refrigerant issues, or compressor malfunctions.

In our study design, each group engages in two distinct troubleshooting tasks.

While these tasks are not identical, they are carefully crafted to be comparable in

complexity. This approach allows us to maintain consistency in the challenge level

across tasks while examining the impact of robotic assistance on task performance

and learning outcomes. By comparing performance on two different but similarly

complex tasks, we can more accurately assess the extent to which robotic assistance

facilitates skill acquisition and problem-solving ability within the domain of HVAC

system maintenance and troubleshooting.
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4.3.2 Procedure

The experiment began with an orientation and demonstration of the ensemble setup

and tasks. Participants then launched an application to input their technical expertise

and reviewed session tasks, malfunction handling instructions, and the 45-minute

limit. They familiarized themselves with the workspace and could command a robot

for actions. A surprise quiz followed, with feedback provided on performance and

improvement areas. Participants watched task demonstrations, including mock board

operations, and accessed a troubleshooting guide. The guide offered an interactive

tutorial on troubleshooting, hierarchically structured for various knowledge levels.

Participants proceeded to interactive demonstrations on using tools and safety

equipment, starting with a digital multimeter, followed by an infrared thermome-

ter, and an outlet tester. A ‘Process Sequence’ flowchart guided them through the

maintenance tasks, starting with temperature checks and proceeding to fan, cooling,

and heating mode checks. The robot introduced itself, assisted based on partic-

ipant proficiency, and set malfunctions for troubleshooting in cooling and heating

modes. Participants were tasked with describing and identifying malfunctions, and

formulating repair plans. Troubleshooting involved guidance from the robot, includ-

ing component specification checks and manipulation of wires and plugs. The session

emphasized analytical skills for fault identification and concluded after restoring mock

board functionality and completing heating mode checks.
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Core Components: Tools, Safety, and Interactive Elements:

The experiment engaged participants with an ensemble setup including a an Assistive

Robot, Tutorial and Guide, a mock HVAC workspace, and Tools and Safety Gear. The

main task involved conducting maintenance checks on the mock board, identifying

and resolving operational deviations.

1. Robot’s Assistive Actions: The robot executed a sequence of actions to

facilitate the session overall, particularly focusing on the technical skill devel-

opment of participants in troubleshooting. Initially, the robot introduced itself,

showcasing its capabilities and limitations to participants. This occurred at

the start of the session, where participants were encouraged to engage with the

robot by issuing commands for task performance, (see Figure 4.2).

As the session progressed, based on its ongoing assessment of each partici-

pant’s expertise, the robot either swiftly granted access to the mock board and

reminded them of their tasks, or delayed access to provide additional safety and

task guidance. Participants then commenced the maintenance tasks.

The robot intervened if participants either mistakenly began an incorrect

task at a given juncture or delayed maintenance (excluding delays for tutorial

review). For example, the initial task involved a temperature check, necessitat-

ing a thermometer, which the robot provided for the first subtask. Robot assis-

tance, from this point, was exclusive to those in the Robot Assistance groups,

except for two instances of malfunction alerts regarding the mock board.

Upon detecting a malfunction, typically in the compressor or condenser fan
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Robot Actions
Estimated 
Expertise

Technician's Actions
Task 
Complexity

Robot 
Assist/No 
Assist

Event 
Order

Introduce self (Gyrates) Any Commands Robot Both Groups Both Groups 1

Place Multimeter (Boardside) Any Commands Robot Both Groups Both Groups 1

Remove Tester (Workspace) Any Commands Robot Both Groups Both Groups 1

Remove Thermomerter 
(Workspace)

Any Commands Robot Both Groups Both Groups 1

Open to mock board
Intermediate/
Expert

Starts Task Both Groups Both Groups 2

Hold board closed Novice Starts Task Both Groups Both Groups 2

Gesture at Gloves Any Starts Task Both Groups Both Groups 3

Place Thermometer (Cue) Any Delays Checking Temp Both Groups Assist 4

Point at Condenser Fan Any Checking Cooling Mode Both Groups Both Groups 5

Point at Compressor (Bulb) Any Checking Cooling Mode Complex Both Groups 5

Gesture at Touchscreen Any Disregards Interruption Both Groups Both Groups 6

Place Multimeter (Cue) Novice Doing Interruption Simple Assist 7

Place Tester (Cue) Novice Doing Interruption Complex Assist 7

Place Multimeter (Cue)
Intermediate/
Expert

Doing Interruption Both Groups Assist 7

Unplug Condenser Fan Any
Finished Interruption 
Task

Simple Assist 8

Unplug Compressor (Bulb) Any
Finished Interruption 
Task

Complex Assist 8

Remove Tester (Workspace) Any Delays Troubleshooting Simple Assist 9

Remove Thermometer 
(Workspace)

Any Delays Troubleshooting Both Groups Assist 9

Demonstrate Socket check Any
Finished Interruption 
Task

Complex Assist 10

Demonstrate Contactor relay 
check

Any Checked Socket Power Complex Assist 11

Demonstrate Wiring (check 
points)

Any
Checked Contactor 
Power

Complex Assist 12

Point at Blower Fan Any Checking Heating Mode Complex Both Groups 13

Point at Heater (Red Bulb) Any Checking Heating Mode Complex Both Groups 13

Conditions of Actions

Figure 4.2: Overview of Robot Actions and Corresponding Conditions.
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during the cooling mode where initial faults were set, the robot notified the par-

ticipant of the suspected issue. Assistance continued only after the participant

accurately acknowledged the malfunction.

The robot then guided the troubleshooting process, tailoring its support

based on the task’s complexity, the participant’s assessed expertise, and their

actions and feedback. It sequentially offered guidance and tools for accurately

diagnosing the malfunction cause. This step-by-step assistance concluded once

the troubleshooting was fully resolved, at which point the robot discontinued

troubleshooting support but continued to signal potential malfunctions for the

second task, as outlined in Figure 4.2.

2. Tutorial and Guide: This application, presented on a touchscreen moni-

tor, served as the primary guide for participants through the study session. It

recorded activity data, provided step-by-step instructions, and offered, in con-

junction with the robot, adaptive guidance and feedback. This component was

essential for directing the participants and collecting data on their interactions.

3. Advanced Electrical Mock HVAC Workspace: This mock board served as

the focal point of the study, meticulously emulating a typical household HVAC

system as an interactive, hands-on platform for participants. It incorporated

sophisticated fault-setting circuitry concealed beneath its layout, specifically

engineered to introduce realistic electrical faults within the power side of the

dual, signal and power circuitry for troubleshooting tasks. This design choice

aimed to streamline the complexity of troubleshooting tasks while ensuring they
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remained challenging and educational. Faults were deliberately programmed

into pivotal components, including the condenser fan, compressor, the Double

Pole Double Throw (DPDT) relay, and a connecting wire from the Contactor

Relay to the Dual Plug Outlet, directing participants’ attention to common

points of failure within HVAC systems.

Moreover, the mock board was outfitted with force resistance sensors under

these components and others, precisely monitoring participant interaction with

the system through the use of troubleshooting tools. This feature enabled a

comprehensive collection of data regarding participant actions, tool engage-

ment, and the timing of such interactions, greatly enriching the study’s depth

of analysis.

4. Toolset and Safety: Essential tools for the experiments include a digital

multimeter for measuring electrical properties, an infrared thermometer for non-

contact temperature assessments, and an outlet tester to ensure outlet safety

and functionality. The mock board is equipped with safety features, including

Ground-Fault Circuit Interrupters (GFCI) in bright yellow, to facilitate safe

interactions during electrical maintenance tasks.

These core components collectively facilitated a structured environment where par-

ticipants could engage in hands-on maintenance tasks, aided by robotic assistance

tailored to their individual needs and skill levels. The detailed orchestration of these

components not only aimed to enhance technical troubleshooting skills but also to

explore the effectiveness of robotic intervention in learning and task execution.
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In this setting, the robot was crucial in deepening learners’ HVAC system knowl-

edge through direct engagement. By performing 23 actions, including unplugging key

components like the condenser fan and compressor and offering voice-guided electrical

resistance measurements, it transformed what could be abstract simulations into tan-

gible experiences. For example, the robot’s actions demonstrated the dual circuitry

for signals and power, and detailed the distinctive setup of external air conditioning

units with plug connections, unlike the heating components without plugs.

The robot’s interactions not only facilitated an understanding of theoretical con-

cepts such as electrical resistance—the measure of a material’s opposition to electric

current flow—but also refined practical skills. Learners were engaged in applying these

concepts, using tools to measure resistance and identifying deviations from expected

specifications, thereby ensuring the correct current flow for the system’s optimal op-

eration. Through its suite of actions, the robot bridged the gap between textbook

learning and practical application, equipping learners with the skills and confidence

to undertake real-world troubleshooting and problem-solving independently.

A Detailed Guide to the Procedural Workflow

With a robust setup in place, we present a detailed guide to the procedural workflow

that delves into the step-by-step process that participants followed during the study.

This guide outlines the sequence of activities, from initial orientation through to the

completion of maintenance tasks, providing insight into how the core components

supported participants throughout the experimental trials.

107



Figure 4.3: Self-Professed Skills Selections.
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Welcome and Initial Assessment: Participants were first introduced to the

experiment through a comprehensive orientation provided by the facilitator. This

initial phase included a detailed walk-through of the ensemble setup and the various

tasks they would undertake, complemented by hands-on demonstrations to ensure

clarity and readiness. This crucial step not only familiarized participants with the

experimental environment but also allowed the facilitator to screen them for any pre-

existing high-level HVAC expertise skills. The aim was to gauge the participants’

baseline knowledge and ensure a uniform starting point for all, facilitating a more

accurate assessment of the robotic assistance’s impact.

Following the orientation, participants transitioned to an interactive phase where

they began their engagement with the ensemble setup. They launched the desig-

nated application, marking the start of their session. This digital interface served

a dual purpose: it provided participants with a platform to input their self-assessed

technical expertise information, as captured in Figure 4.3, and it introduced them to

the session’s workflow. The ‘Welcome’ screen, detailed in Figure 4.4, presented an

overview of the tasks awaiting them. This screen not only outlined what was expected

during the session but also set the stage for the participants’ active engagement in

the learning and troubleshooting processes that followed.
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Figure 4.4: Welcome and Overview of Session.
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Figure 4.5: Robot Assistant Introduction.
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Introduction to the Workspace Map: Following the initial orientation partic-

ipants explored and familiarized themselves with its various components interactively.

By tapping on highlighted sections within the guide, participants could delve deeper

into each area’s specifics, gaining valuable insights and understanding of their roles

and functionalities. The key areas highlighted for exploration included:

1. Tutorial Touchpoints: This section allowed participants to discover how the

tutorial would assist them during their tasks, providing a foundation for under-

standing and engaging with the experimental procedures and objectives.

2. Robot Assistant: Figure 4.5 visually illustrated the robot, enhancing partici-

pants’ familiarity with this technology. Here, participants had the opportunity

to interact directly with the robot, issuing commands for actions such as a self-

introduction by the robot, activation of the robot’s gripper, moving the outlet

tester around the workspace, and relocating the multimeter to the board side.

3. Mock HVAC Workspace: Figure 4.6 offered a visual introduction to the mock

board, setting the stage for the practical component of the experiment where

participants would apply their skills in a simulated environment.

4. Toolset and Safety: Participants reviewed the essential tools and safety equip-

ment required for the experiments. This section emphasized the importance of

safety in the experimental environment, highlighting features such as the bright

yellow Ground-Fault Circuit Interrupters (GFCI) designed to facilitate secure

interactions during the tasks.
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Figure 4.6: Mock Board Information.
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Figure 4.7: Overview of Session.
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Main Tasks on the mock HVAC Workspace: The session on the mock HVAC

workspace was designed to test participants’ ability to perform essential maintenance

tasks within a structured framework. The session was structured around four main

tasks aimed at assessing the participants’ proficiency with the system:

1. Participants started by ensuring the temperature readings matched the actual

ambient conditions.

2. Next, they verified the fan’s operation, crucial for air circulation.

3. Participants then checked the cooling function for maintaining comfortable tem-

peratures.

4. Finally, the heating was examined to ensure it could adequately warm the space.

In addition to these tasks, participants were educated on the various thermostat

modes to navigate the mock HVAC system effectively. Troubleshooting and Man-

aging Interruptions were highlighted as critical components of the session. Par-

ticipants were expected to engage in troubleshooting as soon as malfunctions were

detected, and they were also advised to adeptly manage any interruptions that arose,

ensuring they were addressed efficiently.

A 45-minute time constraint was imposed on the maintenance activities to

add a level of urgency and realism to the task, challenging participants to work both

accurately and efficiently, as depicted in Figures 4.7.

A Surprise Quiz followed the session overview, testing their knowledge and at-

tention to detail during the orientation, as shown in Figure 4.8.
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Figure 4.8: Surprise Quiz!
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Figure 4.9: Get Temperature Reading.
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The guide provided participants with a structured introduction to key mainte-

nance activities on the mock HVAC system, beginning with the Ambient Temper-

ature Verification Demonstration. This demonstration was designed to instruct

participants on how to ensure the accuracy of temperature measurements by compar-

ing readings from a handheld thermometer with those displayed on the mock HVAC

board’s thermostat, as depicted in Figures 4.9. The objective was to familiarize par-

ticipants with the process of measuring and validating ambient temperatures, with

an expectation set for the thermostat and thermometer readings to be within a 5°F

margin of each other.

Following this, the Fan Mode Operation Demonstration offered step-by-step

guidance on verifying the fan mode’s functionality. Participants learned how to adjust

the thermostat settings to activate the fan without triggering the heating or cooling

systems, ensuring that only the blower fan on the left side operated, as opposed to

the condenser fan on the right side. This demonstration, illustrated in Figure 4.10,

aimed to teach participants the correct fan mode configuration and the importance

of verifying the appropriate fan operation.

Both demonstrations were planned to provide participants with the necessary

skills and knowledge to perform these checks accurately. Participants were informed

that the actual task execution would require them to apply these instructions to

ensure the system’s proper functioning. Moreover, they were prepared to identify and

troubleshoot any discrepancies, such as unexpected fan or lamp operations, enhancing

their problem-solving skills in a controlled environment.
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Figure 4.10: Checking Fan’s Functionality.
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Figure 4.11: Check Cooling’s Functionality.
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The Cooling Mode Operation Demonstration provided a detailed walk-

through for participants to verify the functionality of the Cooling Mode on the mock

HVAC system, as illustrated in Figure 4.11. Participants were instructed to set the

thermostat to enable the cooling system while keeping the fan on AUTO. Expected

outcomes of this setting included the activation of the blower fan on the left side in tan-

dem with the cooling system, the blue lamp illuminates for compressor activity, and

the operation of the condenser fan on the right during the cooling cycle. Participants

engaged the cooling system by adjusting the thermostat below room temperature and

observed the specified components’ responses to ensure correct operation.

Following the cooling demonstration, the Heating Mode Operation Demon-

stration showed the necessary steps to assess the Heating Mode’s function, with

visual guidance provided in Figure 4.12. The thermostat was configured to activate

the heating system, also with the fan set to AUTO. This configuration was expected

to activate the blower fan on the left side and the red lamp, symbolizing heating

activity, while ensuring the condenser fan on the right side remained inactive dur-

ing heating operations. Participants increased the thermostat setting above room

temperature to initiate heating and monitored the system’s response, including the

blower fan and red lamp activation, to verify correct heating mode functionality.

Through hands-on experience with the thermostat settings and observation of the

system’s components, participants learned to identify and confirm the proper opera-

tion of the system in different modes, preparing them for the actual task execution

with a focus on accuracy and troubleshooting potential malfunctions.
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Figure 4.12: Checking Heating’s Functionality.
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Figure 4.13: Introduction to Troubleshooting Guide.
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During the study session, participants were introduced to an Interactive Trou-

bleshooting Guide, a crucial tool for diagnosing and resolving issues encountered

with the mock HVAC board, as depicted in Figure 4.13. This guide outlined a system-

atic approach to troubleshooting, encompassing several key steps designed to equip

participants with the skills needed to efficiently identify and address malfunctions:

1. Identify malfunctions by recognizing deviations from standard operations.

2. Gather information through readings to form an understanding of the issue.

3. Conduct visual inspection for visible issues or signs of faults.

4. Examine the thermostat for correct mode, display accuracy, and power.

5. Isolate functionality by deactivating certain components to narrow down the

problem source, utilizing mode switches to test individual system parts.

6. Electrical inspection involved using a multimeter or tester to assess components,

comparing findings against standard specifications to identify anomalies.

7. Review and document findings and components requiring repair.

In addition to the troubleshooting guide, participants received a Comprehensive

Guide to the Mock HVAC Workspace, providing an in-depth look at the simu-

lated HVAC system and its 13 key components. This guide served as an invaluable

resource for understanding the mock board’s functionality, further enabling partici-

pants to undertake effective troubleshooting, as illustrated in Figure 4.14.
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Figure 4.14: The Mock Board’s 13 Components.
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Figure 4.15: Introduction to Workspace and Tools.
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The Tool Usage and Safety Overview module was a critical component of the

study session, designed to educate participants on the correct and safe use of tools

and safety equipment essential for HVAC maintenance. Participants were instructed

to practice tool usage as demonstrated and to maintain workspace order by returning

tools to their designated places after use. The emphasis on adhering to safety proto-

cols during both practice and actual tasks was a key aspect of this module, ensuring

participants understood the significance of safety in the maintenance environment, as

illustrated in Figure 4.15.

Following the safety overview, the Multimeter Usage Demonstration provided

participants with hands-on instructions on using the multimeter effectively for electri-

cal troubleshooting tasks. This demonstration highlighted the proper techniques for

connecting leads and setting the dial for various measurements, including DC voltage,

AC voltage, resistance, continuity, and current. Key instructional points included:

• Ensuring correct lead placement and selecting appropriate dial settings.

• Following specific procedures for voltage, resistance, continuity testing (includ-

ing touching probes together to test), and current measurement.

• Highlighting the importance of safety and precision.

These comprehensive instructions aimed to bolster participants’ confidence and pro-

ficiency in using the multimeter, a pivotal tool in electrical troubleshooting. The

guidance provided in this demonstration, along with the emphasis on safety and cor-

rect tool usage, was made available for participants to refer back to throughout the

session, as depicted in Figure 4.16.
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Figure 4.16: A Follow-Along Digital Multimeter Tutorial.

128



Figure 4.17: A flowchart depicting the whole maintenance task process.
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The Process Sequence and Interactive Flowchart Overview module in-

troduced participants to the ‘Process Sequence’ screen. This screen signified the

commencement of the hands-on maintenance tasks, presenting the sequence of oper-

ations through an engaging flowchart format. Participants, upon viewing with this

screen, were given an overview of the whole maintenance and troubleshooting process,

as illustrated in Figure 4.17.

The Interactive Flowchart Screen further enhanced participants’ engagement

by structuring their journey through the HVAC system evaluation. This interactive

platform led participants from the initial step of identifying temperature discrepan-

cies through detailed checks of the system’s fan, cooling, and heating operations.

With tailored prompts and actions that adapted to participants’ real-time inputs,

the flowchart served as a guide, facilitating a responsive and educational experience.

This approach allowed participants to not only follow a structured sequence but also

to receive specific guidance that informed their actions throughout the session, as

depicted in Figure 4.18.

This combination of the Process Sequence screen and the Interactive Flowchart

provided a comprehensive framework for participants to navigate the maintenance

tasks. By integrating responsive guidance with a structured task sequence, the study

session aimed to foster a deep understanding of HVAC system maintenance, enhancing

participants’ technical skills and problem-solving abilities in a supportive, interactive

environment.

130



Figure 4.18: An adaptive flowchart, individualized to the participant.
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Figure 4.19: Robot opening the mock board for a participant to begin maintenance task.
Participants begin by using the thermometer to take the temperature reading.
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The Interactive Guide and Robot’s Role in Task Navigation segment was

integral to the HVAC maintenance study session, serving as a key resource for par-

ticipants to effectively maneuver through the maintenance tasks. This guide offered

structured prompts, guiding participants through critical stages of the maintenance

process: temperature congruence, fan mode, cooling mode, and heating mode checks.

From the outset, the robot was essential in facilitating participant interaction with

the guide. It introduced itself at the beginning, setting the tone for a collaborative

session. Depending on the ongoing assessment of each participant’s expertise, the

robot either promptly provided access to the mock board, reinforcing task objectives,

or offered additional guidance on safety and task procedures, as illustrated when the

robot opened the Mock Board for a participant in Figure 4.19.

Adaptive Task Scenarios and Troubleshooting were tailored to the com-

plexity level suited to each participant’s experimental group—simpler or complex. In

simpler scenarios, participants encountered malfunctions during the cooling mode,

such as a defective condenser fan, followed by a compressor issue. The complex sce-

narios introduced a malfunction during the cooling mode check and another during

the heating mode, challenging participants to apply their troubleshooting skills more

extensively.

The robot and the interactive guide provided essential support in these scenarios,

offering adaptive guidance tailored to the nature of the fault and the participant’s

skill level. This approach ensured that participants received the necessary information

and assistance to effectively address the malfunctions. We depict a notional scenario

where a participant identified a fault in the cooling mode in Figure 4.20.
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Figure 4.20: Participant indicating a Cooling Mode malfunction after having tapped on
the red thumb-down button.

134



Figure 4.21: Participants Describe the Malfunction..
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During the HVAC maintenance task, the interaction between participants and

the robot was pivotal in identifying and addressing malfunctions. The robot not

only signaled the detection of a malfunction but also took an active role in guiding

participants towards the suspected issue, physically indicating the malfunctioning

part on the mock board. This assistance aimed to direct participants’ attention to

potential problems, yet the onus was on the participants to verify and articulate the

nature of the malfunction, reinforcing their engagement and analytical skills in the

troubleshooting process.

Describing the Malfunction involved an exercise where participants used a

list of descriptive words to articulate the malfunction they observed. This task en-

couraged a detailed examination of the issue, with participants tapping on words to

accurately convey their observations. The flexibility to adjust their descriptions be-

fore final submission allowed for a reflective process, ensuring a thorough and precise

communication of the malfunction. Moreover, participants were prompted to con-

sult the tutorial as needed, ensuring they were well-supported in articulating their

observations, as shown in Figure 4.21.

As depicted in Figure 4.22, an essential pause was introduced into the trou-

bleshooting sequence, preventing participants from prematurely concluding the fault

identification process. This mechanism ensured that participants engaged deeply with

the troubleshooting process, compelling them to undertake a methodical examination

of the mock board before indicating a finding of fact as to the specific fault. This step

served as a Troubleshooting Cue, guiding participants to initiate troubleshooting,

thereby enhancing the depth and effectiveness of their problem-solving approach.
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Figure 4.22: Participants Identify the Malfunction.
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Figure 4.23: Interruptions Prompt Screen. listening for and following the instructions
enables participants to handle the interruptive task during troubleshooting.
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Depicted in Figure 4.23 is the study session’s interface designed for managing in-

terruptions, which occur during the participant’s engagement with troubleshooting

tasks on the mock HVAC board. These interruptions are crafted to mimic real-world

distractions that technicians might encounter, requiring participants to momentarily

shift their focus. Participants are tasked with listening to instructions and responding

appropriately by entering a specified code, testing their ability to manage multitasking

and maintain attention to detail under potentially disruptive conditions. The Role of

the Robot in Handling Interruptions was strategic, enhancing the troubleshoot-

ing process’s depth and realism. While the robot did not directly assist in managing

the interruptions themselves, its role in facilitating the troubleshooting process was

critical. As depicted in Figure 4.24, the robot actively contributes to the task envi-

ronment by placing a digital multimeter within the participant’s reach, signifying the

instrument as the next necessary tool for the task at hand. This action by the robot

serves as a crucial cue, subtly guiding the participant towards the correct course of

action in the midst of troubleshooting activities.

Despite not intervening in the interruptions directly, the robot provided invaluable

support once participants addressed the interrupting tasks. By offering step-by-step

guidance tailored to the situation, the robot ensured that participants could efficiently

resume their troubleshooting efforts with minimal disruption to their workflow. This

dynamic interaction between the participant, the robot, and the interrupting tasks

underscored the importance of adaptability, focus, and the effective use of Environ-

mental Cues in maintaining progress and accuracy during technical maintenance

activities.
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Figure 4.24: Robot in motion, placing a digital multimeter near the user as the correct
and next-step tool during an interruption. A cue in the environment of the technician.
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Figure 4.25: Instructions deliver by voice and on the screen assisting participants with
troubleshooting faults in a malfunctioning mock HVAC workspace.
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Simpler Scenario: Focused Approach to Component Testing: In these less

complex scenarios, the robot’s assistance was pivotal, yet straightforward, facilitating

an easier navigation through the troubleshooting process for participants:

• Directing Attention: The robot effectively guided participants towards iden-

tifying potential issues by pointing out components likely to be faulty. This

direct approach significantly streamlined the troubleshooting process, enabling

participants to focus their efforts more efficiently.

• Manipulating Components: One of the robot’s key roles was its physical in-

teraction with the HVAC system, exemplified by actions such as unplugging

the condenser fan, as shown in 4.26. This intervention allowed participants to

perform specific tests, such as checking the condenser fan’s resistance, without

the need for intricate disassembly or reconfiguration of system components.

• Visual and Auditory Guidance: The troubleshooting experience was enriched by

the robot’s use of visual and auditory cues. Figure 4.25 illustrates how the robot

not only vocalized instructions but also utilized the touchscreen interface to

display pertinent information. This multi-modal approach to guidance provided

participants with a comprehensive and accessible learning experience, catering

to different learning preferences and enhancing the overall effectiveness of the

troubleshooting process.

Through the integration of direct assistance, physical interactions with the system,

and multi-modal guidance, the robot significantly contributed to simplifying the trou-

bleshooting process in simpler scenarios.
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Figure 4.26: Robot unplugs the plug for the compressor so that the participant can measure
the participant can measure the resistance at the plug’s prongs.
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Figure 4.27: Robot unplugs the plug for the compressor so that the participant can measure
the participant can measure for power at the open outlet.
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In the Complex Scenario: Extensive Troubleshooting Guidance, partic-

ipants were immersed in more complicated troubleshooting tasks that demanded a

deeper engagement with the HVAC system’s intricacies:

• Complex Component Checks: The act of physically unplugging components,

such as the compressor, allowed participants to conduct thorough examinations

of sockets, power relays, and wiring connections. This step was crucial for

accurately identifying the power source, offering clear guidance for subsequent

actions, and facilitating a deeper understanding of the troubleshooting process

by isolating specific issues and enabling targeted diagnostics.

• Analytical Skill Integration and Responsibility: Despite the robot’s guidance,

the ultimate responsibility for identifying faults rested with participants. They

needed to use their analytical skills to interpret the robot’s advice and combine

it with their observations for an accurate diagnosis. The robot’s assistance,

designed for both simple and complex scenarios, aimed to complement—not

replace—the participants’ analytical process. This approach fostered a learn-

ing environment where participants enhanced their problem-solving capabilities

through exploration, analysis, and deduction.

Figure 4.27 showcases the robot offering complementary instructions on the touch-

screen, which included not just procedural guidance but also recommendations for

tool usage. Meanwhile, Figure 4.28 highlights the robot’s action in identifying the

specific socket for examination, aiding participants in pinpointing areas of interest

during their troubleshooting efforts.
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Figure 4.28: Robot pointing at the open outlet after having unplugged the component
from the socket.
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Figure 4.29: Robot unplugs the plug for the compressor so that the participant can measure
the participant can measure for power at the open outlet.
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In the progression of the HVAC maintenance study session, Figure 4.29 captures

a critical juncture in the troubleshooting process, where the actions and guidance

provided by the robot adapt based on the outcomes of the participant’s investigative

efforts. At this stage, the task at hand involves the measurement and reporting of

voltage levels, a step crucial for determining the next step. This Adaptive Guidance

is pivotal, as it ensures that participants receive support tailored to their current task

state. Illustrated further in Figure 4.30 is the robot’s role in guiding participants

towards accurate tool usage. Here, the robot points out the specific contact point on

the relay, which are key to powering the sockets connected to the potentially faulty

compressor and condenser fan. This visual cue from the robot directs participants to

use the multimeter and its leads for voltage measurements at these critical points, a

step fundamental to diagnosing the issue accurately.

Complementing the robot’s physical cues, the touchscreen interface offers com-

prehensive procedural guidance alongside tool usage recommendations. This digital

guidance is further augmented by wiring diagrams located on the inside of the mock

board’s lid, providing participants with a visual reference that aids in understand-

ing the system’s electrical connections and configurations. This Multi-Modal Ap-

proach to instruction—combining visual indicators from the robot, digital guidance

on the touchscreen, and supplementary wiring diagrams—ensures that participants

have access to a rich array of information resources. These resources are designed to

support participants in navigating the troubleshooting process effectively, fostering a

deep engagement with the task and enhancing their technical troubleshooting skills.
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Figure 4.30: Robot pointing at the open outlet after having unplugged the component
from the socket.
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Figure 4.31: Continuity check instructions provided by voice, gestures, and in print.
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In the process of troubleshooting within the complex scenario, Robot-Assisted

Continuity Testing emerges as a critical phase, with the robot guiding participants

through this precise diagnostic task. The robot’s assistance is multifaceted, blending

auditory instructions, text prompts on the touchscreen, and physical demonstrations

to ensure a comprehensive understanding and execution of the continuity check.

As participants approach this pivotal step, they are first advised by the robot to set

the thermostat to ‘off’, a necessary precaution to ensure accurate testing conditions.

Figure 4.31 illustrates this initial instruction as displayed on the touchscreen, setting

the stage for the continuity test.

The subsequent guidance focuses on the practical execution of the test. The

robot directs participants to place the multimeter probes on specific Points along

the Circuit: one probe at point ‘B’ on the Contact Relay and the other at point

‘C’ near the socket base, as visually indicated by the robot pointing at point ‘C’ in

Figure 4.32. These critical points for the test are not only demonstrated by the robot

but are also clearly detailed on the diagram inside the mock board’s lid, ensuring

participants have a clear visual reference to aid in probe placement.

In addition to directing the physical placement of the probes, the robot provides

essential guidance on Interpreting the Multimeter’s Readings. It explains that

a continuity beep signifies a complete circuit between points ‘B’ and ‘C’, while the

absence of a beep could indicate a potential fault in the wire connecting these points.

This nuanced instruction extends to the continuity check along the white wire, rec-

ommending a similar test from point ‘A’ to point ‘D’.
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Figure 4.32: The robot point at point ‘C’ as depicted in the mock board diagram available
on the inside of the mock board’s lid and in the tutorial materials.
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Figure 4.33: Participants report their results of troubleshooting at this screen.
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Upon completing the troubleshooting process, participants are tasked with Re-

porting their Findings. This step is integral for summarizing their experiences

and insights gained throughout the session.

Fault Reporting Instructions: At this juncture, participants are prompted to

consolidate and report the faults they have identified. They do this by selecting the

most accurate descriptive words from a provided list to articulate the nature of the

faults found. This selection process culminates with the “Submit Fault Identification”

action, at which point their choices become final, as illustrated in Figure 4.33.

Repair Strategy Formulation: Following the fault reporting, participants are

guided towards formulating a repair strategy by translating diagnostic findings into

actionable repair plans. Note: participants are not expected to execute the actual

repairs; instead, the focus is on developing a theoretical strategy and useful technical

skills.

Strategy Development: In developing their repair strategy, participants are

tasked with outlining the necessary steps and identifying the required parts for the

hypothetical repair. They finalize their strategy by selecting relevant terms that best

describe their proposed approach and confirm their plan with the “Confirm Plan”

action, solidifying their approach, as depicted in Figure 4.34.
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Figure 4.34: Participants proffer a plan of rectification. the plan should be effective at
rectifying the identified fault.
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Figure 4.35: The participant’s flowchart guiding them to the end to the session.
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As participants navigated through the the maintenance session, culminating in

the identification and troubleshooting of faults, as well as managing interruptions,

their journey reached its conclusion as outlined in Figure 4.35. This figure symboli-

cally represents the structured flowchart that guided participants toward the session’s

endpoint.

Upon reaching the Completion of the Maintenance Session, participants were

warmly congratulated for their commitment and resilience demonstrated throughout

the session. They were also reminded to verify that all components of the session had

been addressed, ensuring a thorough and comprehensive engagement with the tasks

at hand.

The Final Steps and Outbrief served as the session’s capstone, where partici-

pants were tasked with restoring the mock HVAC board to its initial setup. This step

was followed by an outbrief session with the facilitator, creating a reflective space for

participants to share their experiences, insights gained, and provide feedback on the

session. This closing dialogue offered valuable perspectives on the learning process

and the application of skills in troubleshooting and maintenance tasks.
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Figure 4.36: Participant is instructed to restore tools and the mock board to original states
and to meet with their facilitator..
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4.3.3 Hypothesis Testing and Metrics

The study tests a series of hypotheses pertaining to the impact of robotic assistance

on task efficiency, interruption management, and error reduction. The primary hy-

pothesis asserts that robotic assistance significantly enhances the efficiency of task

performance in troubleshooting activities. This overarching hypothesis is further seg-

mented into sub-hypotheses, each focusing on specific aspects of robotic assistance,

including its effectiveness in managing interruptions, aiding in task resumption post-

interruption, and influencing task efficiency and error rates. The metrics employed

for hypothesis testing encompass:

• Interruption Response Time: This metric measures the duration taken by

participants to address and conclude an interruption task, shedding light on the

efficacy of robotic assistance in interruption management.

• Task Resumption Time: This metric gauges the time taken by participants

to return to and recommence the primary troubleshooting task after an inter-

ruption, evaluating the proficiency of robotic assistance in ensuring a smooth

transition back to tasks.

• Task Efficiency: The influence of interruptions on task efficiency is scruti-

nized by examining the resumption lag and time-on-task (TOT) (Magrabi et al.,

2010). TOT represents the time expended in completing the maintenance task

and serves to investigate any lingering effects of an interruption. This mea-

sure is especially pertinent in an educational milieu where technical tasks are
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undertaken under the pressure of time constraints. It is computed as follows:

TOT = Ttotal − Tinterruption − Tresumption

where Ttotal is the Session Time, Tinterruption is the time dedicated to the inter-

rupting task, and Tresumption is the resumption lag.

• Errors: This metric records the frequency and types of errors made during task

execution, comprising both errors of commission and omission. Specifically,

errors are accrued in one or both of the following cases: when a participant

neglects to perform a required action for a specific problem, or performs an

action that is incorrect or unnecessary for the problem. Each error type is

tallied and contrasted against an optimum benchmark, established based on

expert performances at each level of task complexity. The computation of errors

involves the following formula:

Error = Participant’s Errors − Optimal Number of Errors

In this context:

– Participant’s Errors refers to the number of errors made by a participant.

– Optimal Number of Errors is the benchmark or the expected number of

errors for a task, ideally the minimum or no errors.

Additionally, we measure interruption task performance times, encompassing inter-
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ruption lag (time taken to attend to interruptions) and the time required to complete

interruptive tasks. This measurement is crucial as literature suggests that partici-

pants may accelerate the completion of primary tasks if they perceive that excessive

time has been devoted to interruptive tasks (Speier et al., 1999, 2003; Brumby et al.,

2013). We expect this phenomenon to notably impact resumption lag, that is, the

time taken to resume the primary task following an interruption, particularly after

time-intensive interruptive tasks. Moreover, we anticipate an increase in errors conse-

quent to the time cost imposed by such interruptive tasks. If these time-cost related

errors are observed, our study design enables us to discern whether robotic assistance

effectively ameliorates these errors and whether such effects vary across different levels

of task complexity. Notably, in our study design, robotic assistance as an intervention

always precedes the second occurrence of an interruption.

Hence, Hypothesis 1: Robotic assistance significantly enhances the efficiency of

task performance in troubleshooting activities.

• H1.1: There is an inverse correlation between the time spent on interruption

tasks and the subsequent resumption lag time, with longer interruptions leading

to quicker resumption of primary tasks.

• H1.2: The imposition of a time cost by interruptive tasks leads to an increase

in errors during the completion of primary tasks.

• H1.3: Robotic assistance effectively reduces the errors consequent to the time

cost imposed by interruptive tasks.
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• H1.4: The impact of robotic assistance on mitigating errors varies task complex-

ity, with more complex tasks showing a greater benefit from robotic intervention.

• Hypothesis 1.5: Robotic assistance aids in quicker task resumption post-interruption.

• Hypothesis 1.6: Robotic assistance effectively manages interruptions.

• Hypothesis 1.7: Robotic assistance contributes to a reduction in error rates

during task execution.

• Hypothesis 1.8: Robotic assistance positively influences Time-on-Task (TOT)

efficiency, reducing the total time required for task completion.

These hypotheses are key to assessing the role and efficacy of robotic assistance

in technical education, offering insights into how robotics influences learning

outcomes in relation to task complexity and learner’s skill level.

4.3.4 Understanding Task Complexity Dynamics in the Mock

Board HVAC System Troubleshooting.

In our experimental design, we distinguished two levels of task complexity in the

simulated HVAC system, categorized as high and lower complexity. These levels

were determined based on the intricacy of component interactions and the difficulty

involved in diagnosing malfunctions. High-complexity tasks involved multiple in-

formational layers, sequential steps, and a nuanced understanding of how various

components interacted. The lower complexity tasks, while simpler, still presented

significant challenges in troubleshooting. For each complexity level, our study had
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groups undertake two distinct tasks. These tasks, tailored to their respective com-

plexity levels, were designed to be of similar difficulty within each category, ensuring

a consistent challenge across both high and low complexity tasks. This approach

allowed for a balanced evaluation of robotic assistance’s impact on performance and

learning outcomes. By analyzing how each group handled two tasks of a similar com-

plexity level, we could more accurately gauge the influence of robotic assistance in

fostering skill acquisition and enhancing problem-solving abilities in HVAC system

maintenance and troubleshooting.

To participants, malfunctions might initially seem to occur in components like

the condenser fan, compressor, or heater. However, the true faults were programmed

into specific parts of the system. These included the condenser fan, compressor,

the connecting wire from the Contactor Relay to the Dual Plug Outlet, and the

Double Pole Double Throw (DPDT) relay. This deliberate focus was intended to steer

participants towards recognizing common points of failure within HVAC systems.

The system’s complexity is further highlighted by the blower fan’s configuration.

Unlike more straightforward components, the blower fan, lacking conventional plugs,

is designed to operate through a more complex setup involving two relays and a

sequencer. This design choice not only underlines the intricate workings of HVAC

components but also the depth of understanding required for effective troubleshooting.

The blower fan’s ability to be powered from multiple sources adds another layer of

complexity to its operation, emphasizing the need for advanced troubleshooting skills

to identify and resolve issues within the mock HVAC board’s task scenarios.
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Task Complexities: Simpler Task Scenarios

Task: Identify the fault causing the condenser fan to malfunction.

The simpler task generally involves the following steps:

1. Identifying deviations from the expected behavior of the mock board mode.

2. Identifying the component on the mock board that appears to be faulty.

3. Determining the range of potential faulty components on the mock board that

could be the actual fault other than the ostensibly faulty component, which

includes:

• The power source to the apparently faulty component.

• Components involved in power transmission, including for the cooling fault:

Thermostat, Terminal Block, Contactor Relay, Duplex Outlet, Compres-

sor, and Condenser Fan.

• Identifying relevant components within this range that could cause the ob-

served malfunction, thereby narrowing down the components to be checked.

– The requisite knowledge and deduction to reduce the space of possi-

bilities is to know that:

(a) The Condenser Fan and Compressor share a common power source:

Duplex Outlet.

(b) The Compressor is functioning.

(c) Since the Compressor is functioning, there is power at Duplex

Outlet.
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(d) Eliminate all other components as potential cause the observed

malfunction as there is no other intervening component between

the malfunctioning component (Condenser Fan) and its power

source.

4. Selecting the correct tools/instruments to inspect the component.

5. Electrically inspecting the seemingly faulty component, i.e., the Condenser Fan.

6. Comparing the findings from the instruments with the expected specifications

of the components.

7. Determining the likely faulty component based on discrepancies between the

instrument readings and the expected specifications.

This procedure underscores the simplicity of the task through its structured, logi-

cal approach to identifying and replacing a malfunctioning condenser fan, reflecting

clear, direct signs that unambiguously indicate the problem and mimic common trou-

bleshooting scenarios essential for foundational learning and practical applications.

This methodical troubleshooting approach is required of the second troubleshooting

task: identifying the fault causing the compressor to malfunction.

Task Complexities: Complex Task Scenarios

Task: Identify Fault causing the condenser fan and compressor to mal-

function.

The complex task involves a more intricate diagnostic process:
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1. Identifying deviations from the expected behavior of the mock board mode.

2. Identifying the component on the mock board that appears to be faulty.

3. Determining the range of potential faulty components on the mock board that

could be the actual fault other than the ostensibly faulty component, which

includes:

• The power source to the apparently faulty component.

• Components involved in power transmission, including:

– For the Cooling Mode fault:

(a) Thermostat

(b) Terminal Block

(c) Contactor Relay

(d) Duplex Outlet

(e) Compressor

(f) Condenser Fan

(g) SPST Relay

(h) Transformer

(i) Circuit Breaker

– For the Heating Mode fault:

(a) Thermostat

(b) Terminal Block
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(c) DPDT Relay

(d) SPST Relay

(e) Heater

(f) Blower Fan

(g) Transformer

(h) Circuit Breaker

(i) Sequencer

• Identifying relevant components within this range that could cause the ob-

served malfunction, thereby narrowing down the components to be checked.

– The requisite knowledge and deduction to reduce the space of possi-

bilities is to know that:

(a) The Condenser Fan and Compressor share a common power source:

Duplex Outlet.

(b) Since the neither is functioning, there might be no power at the

Duplex Outlet.

(c) The Duplex Outlet is possibly the first common source of malfunc-

tion that immediately precedes the malfunctioning components.

(d) Follow schematics/wiring diagrams to determine signal lines and

power lines to get power at Duplex Outlet.

(e) Disregard distractions: the Blower fan’s behavior is complicated

i. It stays on for five minutes if it was on as a result of being

activated in the cooling mode
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ii. It is delayed in its activation, but only in the heating mode.

(f) Exclude the SPST Relay, Circuit Breaker, and Transformer as

the Blower Fan is functioning; the transformer transmits power

through the circuit breaker to the SPST relay onward to the Blower

Fan. If the SPST relay were faulty, the blower fan will not function

properly in the cooling mode.

(g) Exclude the Thermostat as specified in the instructions.

4. Understanding the behaviors and specifications of the remaining (included) in-

tervening and terminal components.

5. Examining the connections/wiring between remaining intervening and terminal

components.

6. Selecting the correct tools/instruments to inspect the remaining components

within the suspected fault area.

7. Isolating functionality by electrically inspecting each component, starting up-

stream (first common potentially faulty components (Duplex Outlet)) and mov-

ing toward downstream (terminal components) if the Duplex Outlet is powered,

or upstream, to the source of power to the Duplex Outlet.

8. Methodically traverse the circuitry, electrically inspecting connections and com-

ponents.

9. Comparing the findings from the instruments with the expected specifications

of the components.
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10. Determining the likely faulty component based on discrepancies between the

instrument readings and the expected specifications.

This detailed diagnostic approach highlights the complexity of the task, necessitating

a comprehensive understanding of HVAC system electrical wiring, the effective use

of diagnostic tools, and accurate interpretation of results. It simulates advanced

technical challenges encountered by professionals, thereby testing and enhancing deep

analytical and problem-solving skills. This methodical troubleshooting approach is

required of the second troubleshooting task: identifying the fault causing the heater

to malfunction.

4.3.5 Task Selection

In line with our established performance metrics, we selected tasks that not only

embody typical cognitive demands in various work settings but also facilitate mea-

surement of these metrics. Participants were engaged with an electrical HVAC mock

board, a detailed simulation of a standard household heating, ventilation, and air

conditioning system, as elaborated on in Section 4.3.4.

Maintenance Tasks:

The participants’ primary objective was to ensure the efficient operation of our mock

board HVAC system through systematic checks:

1. Ensure Ambient Temperature Congruence: Participants verified the am-

bient temperature reading of the Thermostat on the Mock Board using an

169



infrared thermometer.

2. Test Fan Mode Operation: The thermostat was set to operate the fan con-

tinuously, independent of the heating or cooling systems.

3. Test Cooling Mode Operation: Here, participants engaged the cooling sys-

tems on-demand via the thermostat, alongside fan operation.

Troubleshooting Tasks:

(a) Simpler:

i. Identify Fault causing the condenser fan to malfunction.

ii. Identify Fault causing the compressor to malfunction.

(b) Complex:

i. Identify Fault causing the condenser fan and compressor to malfunc-

tion.

4. Test Heating Mode Operation: This task involved activating the heating

systems on-demand with fan operation through the thermostat.

Troubleshooting Tasks:

(a) Complex:

i. Identify Fault causing the heater to malfunction.

These tasks were chosen for their prevalence in household HVAC operations and the

relative ease of identifying malfunctions by participants. They demand substantial

cognitive resources for precise information processing and retention, especially when
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interrupted (Altmann and Trafton, 2002; Anderson and Douglass, 2001; Altmann and

Hambrick, 2017). Moreover, these tasks serve as a platform to introduce technical

HVAC concepts, aiming to enhance participants’ understanding and troubleshooting

skills in such systems — competencies they are expected to develop through the

training sessions with our ensemble setup.

From our perspective, competency in technical fields like HVAC systems needs to

be developed over time through education, training, and experience. Notably, only a

few of our participants possessed the requisite competency in HVAC systems at the

outset. While most participants had education up to the 12th grade level, almost

none had all three components of the competency related to HVAC systems. This

reality underscored the need for a carefully designed educational intervention, such

as the one provided by our experimental setup.

Interruptions:

To mimic real-world scenarios, we introduced two types of interruptions, each varying

in difficulty and cognitive load:

• Routine Audio Interruption: This involved an audio cue resembling a 1970s

telephone ring, followed by voice instructions. Participants responded by enter-

ing a specific code on the touchscreen.

• Audio-Math Question: This interruption required participants to solve a

basic arithmetic problem and input the answer on the touchscreen. It was

designed to engage them in analytical and numerical thinking, akin to typical
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professional interruptions.

These interrupting tasks were strategically employed to challenge the participants’

focus and mental effort, inducing attention shifts and heightening the cognitive load

on their working memory (Altmann and Trafton, 2020; Trafton et al., 2003). This

approach aligns with the objectives outlined in Section 4.3.4, offering a framework for

evaluating cognitive engagement and learning in technical tasks.

4.3.6 Participant Selection and Grouping

To facilitate a comprehensive analysis of the impact of robotic assistance and task

complexity on task performance, we implemented a controlled experimental design.

This design divided participants into four distinct groups based on two key criteria:

the presence of robotic assistance and the complexity of the tasks to be performed.

The grouping is organized as follows: two main categories were established based

on whether participants receive robotic assistance during the tasks. Within each of

these main categories, participants were further divided based on the complexity of

the tasks they are assigned—either simpler or more complex troubleshooting tasks.

This division allows for comparative analyses across different dimensions, including

task performance, response to interruptions, and error rates between groups.

For those groups designated to receive robotic assistance, it is important to note

that the robot’s support was provided exclusively during the first of the two assigned

troubleshooting tasks. This approach enables the study to assess the specific contri-

butions of robotic assistance to task performance and to examine how participants
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manage subsequent tasks independently.

This structured grouping and the experimental setup are crucial for exploring

the interactions between task complexity, the presence of robotic assistance, and

their collective impact on participant performance, as detailed in the study design

illustrated in table 4.1.

4.3.7 Materials, Instruments, and Data Collection

The study leveraged a variety of materials and instruments, each playing a crucial

role in the experimental setup and data collection process. The following components

were integral to the study:

1. Azure Kinect DK Cameras: These cameras captured participant activity

for image classification and object detection. The visual data collected were

crucial for monitoring participant behavior during the session.

2. Force Resistance Sensors: Installed beneath key components on the mock

board, these sensors detected physical interactions by participants, such as

pressing, turning, or attaching tools. Each time a participant manipulated

a part of the board, these sensors recorded the force applied, providing insight

into how participants engaged with the equipment. This allowed for tracking of

actions on the mock board.

3. Arduino Modules: Arduino boards placed under the mock board collected

signals related to mode selections and operational commands. These signals

were essential for understanding how participants navigated through different
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operational modes of the HVAC system. These modules served as intermedi-

aries for data collection, facilitating the recording of participant choices and

interactions with the HVAC system.

4. Experimental Application: The study’s application played a key role in

gathering data on participants’ actions. This included inputs regarding their

self-assessed technical expertise, choices made during the troubleshooting pro-

cess, and interaction patterns with the tutorial and guide.

Data was collected throughout the experimental trials, including task completion

times, resumption lag times, error rates, physical interactions with the mock board,

mode selection choices, and application interactions. This comprehensive collection of

data from the various instruments and interactions provided a dataset for analyzing

the impact of robotic assistance on task performance and learning outcomes.

4.3.8 Recruitment and Screening

The recruitment process for our study was initiated with careful prescreening of po-

tential participants. Our focus was on enlisting adults who were fluent in English

and had not previously been involved in our studies. In order to ensure unimpaired

interaction with the study materials and maintain the integrity of the results, indi-

viduals with medical conditions that could potentially affect their comprehension or

interaction, such as color blindness or auditory impairments, carefully excluded from

participation.

Additionally, in line with our objective to assess the impact of the ensemble —
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consisting of the robot’s assistance and its complementary tutorial and guide applica-

tion — on the learning of technical subjects, we screened out participants possessing

specific knowledge of HVAC systems. Therefore, all participants were novices with

regard to the intricacies of HVAC circuitry and systems.

Power Analysis and Participant Recruitment

A power analysis was conducted to determine the necessary sample size for assessing

the effects of robotic assistance and task complexity on task performance. Drawing

on empirical benchmarks from relevant literature, we estimated a large effect size

(f = 0.40), in line with Cohen’s conventions for ANOVA. The analysis utilized the

F-test for ANOVA, with the following parameters: a significance level (α) of 0.05,

a desired power (1 − β) of 0.80, and four groups corresponding to our experimental

design. Employing the statsmodels.stats.power Python package, our calculations

indicated the requirement for approximately 72 participants per group.

Our study engaged a cohort of 76 adults. While 11 participants were excluded

based on predefined criteria, resulting in a final dataset comprising 65 participants,

with a demographic composition of 55 males and 10 females. Our sample population

reflects the ratio of the cadet student body and the population of the US Military

Academy, where the study sessions were conducted.

Methodology for Group Allocation:

1. Group Assignment: Participants were randomly assigned to one of four groups

(Groups 1-4), ensuring an unbiased distribution across the study’s different
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conditions. This randomization was crucial for maintaining the integrity of the

data collection process.

2. Uniform Expertise Level: Since all participants had a similar level of expertise,

extensive rebalancing for skill disparities was not necessary. This uniformity in

expertise allowed for a more straightforward analysis of the impact of robotic

assistance and task complexity, without the confounding factor of varying par-

ticipant skill levels.

3. Division Based on Experimental Conditions: The participants were categorized

into four groups based on two primary criteria:

(a) The presence of robotic assistance.

(b) The complexity of the tasks assigned.

The groups were structured as follows:

(a) Group 1: Received robotic assistance and assigned simpler tasks.

(b) Group 2: Received robotic assistance and assigned more complex tasks.

(c) Group 3: Did not receive robotic assistance and assigned simpler tasks.

(d) Group 4: Did not receive robotic assistance and assigned more complex

tasks.

4. Controlled Application of Robotic Assistance: For groups 1 and 2, robotic as-

sistance was provided only during the first of the two assigned troubleshooting
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tasks. This controlled use of robotic assistance allowed for a focused analy-

sis of its impact on task performance and independent task management by

participants in subsequent tasks.

This methodology, alongside the controlled experimental setup, was key in ex-

ploring how robotic assistance and task complexity interact and affect participant

performance. The study design, as detailed in Table 4.1, is tailored to capture these

dynamics effectively.

4.4 Results

Our analysis hinged on the application of Analysis of Variance (ANOVA), employ-

ing both repeated measures and mixed-model methodologies to dissect the dynamics

within our dataset. To fulfill the assumptions of normality, we analyzed our data

using Q-Q plots and conducted Shapiro-Wilk tests (Shaphiro and Wilk, 1965). The

independence of observations was stringently maintained within and across the dif-

ferent groups, and dependent variables were quantified at the interval level, allowing

for meaningful and nuanced comparisons.

In our effect size calculations, we used a methodological approach that mirrored

the complexity inherent in our data. For Mixed-Model ANOVA, the traditional com-

putation of Cohen’s d was adopted. In contrast, for repeated measures ANOVA, our

approach was tailored to resonate with the paired nature of our data. We utilized

Cohen’s dz specifically for paired samples (Goulet-Pelletier and Cousineau, 2018).
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4.4.1 Overall Effects and Their Interactions

We used a Mixed Linear Model to capture the correlations of observations within

individual subjects. Moreover, the incorporation of random effects within the model

was strategic, accommodating the spectrum of individual variability and infusing an

additional layer of analytical depth into our study.

4.4.2 Resumption Lag:

The mixed linear model’s analysis of resumption lag, evaluated at different stages,

brought to light key findings. The baseline resumption lag, as indicated by the model’s

intercept, was 11.133 seconds, underscoring a significant inherent challenge in task

resumption (statistically significant compared to zero, p < 0.001).

The analysis considered the main effects and two-way interactions between Task

Complexity and Robot Assistance, with the point of assessment for measuring re-

sumption lag serving as a fixed effect to represent distinct measurement stages. The

results are summarized below:

• Task Complexity Effect: The influence of task complexity on resumption

lag was not significant (β = 0.426, p = 0.790), indicating that the complexity

level of the task did not have a considerable impact on the time taken to resume

tasks.

• Robot Assistance Effect: The presence or absence of robot assistance did not

significantly influence resumption lag times (β = 0.836, p = 0.607), suggesting
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that the impact of robot assistance on task resumption was not statistically

significant.

• Assessment Point Effect: There was a notable reduction in resumption lag

at the second assessment point compared to the first (β = −3.432, p < 0.001),

pointing to a significant decrease in resumption lag over the course of the study.

• Interaction Effects: The interaction between Task Complexity and Robot

Assistance was not significant (β = −2.700, p = 0.243), indicating that the

combined effect of these variables on resumption lag was minimal.

In summary, the initial resumption lag was significant, with a notable decrease

observed at the later assessment point. The lack of significant influence from Task

Complexity and Robot Assistance suggests that these factors, either individually or

combined, did not substantially affect resumption lag within the context of this study.

4.4.3 Interruption Task Completion Time:

The mixed linear model’s analysis of interruption task completion time, assessed

at different points, revealed significant insights. The model’s intercept was set at

16.868 seconds, indicating a baseline completion time for interruption tasks that is

statistically significant compared to zero (p = 0.001). This highlights the inherent

challenge in completing interruption tasks.

The analysis incorporated the main effects and two-way interactions between Task

Complexity and Robot Assistance, with ‘Assessment Point’ as a fixed effect to rep-

resent distinct measurement stages. Key findings from the model are summarized
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below:

• Task Complexity Effect: The impact of task complexity on interruption

task completion time was not statistically significant (β = −5.853, p = 0.394),

suggesting that the complexity level of the task did not notably affect the time

taken to complete interruption tasks.

• Robot Assistance Effect: The influence of robot assistance on the com-

pletion time of interruption tasks was not statistically significant (β = 4.442,

p = 0.525), indicating that the robot assistant’s impact on these tasks was not

substantial.

• Assessment Point Effect: A significant increase in interruption task comple-

tion time was observed at the second assessment point compared to the first

(β = 20.422, p < 0.001), indicating an escalation in the time required to com-

plete interruption tasks over the course of the study.

• Interaction Effects: The interaction effect between Task Complexity and

Robot Assistance on interruption task completion time was not significant (β =

0.186, p = 0.985), suggesting that the combined effect of these variables on this

metric was minimal.

In summary, while the baseline time for completing interruption tasks was signifi-

cant, an increase in this metric was observed at the later assessment point. However,

neither Task Complexity nor Robot Assistance, either individually or combined, sub-

stantially influenced the completion time of interruption tasks within the context of
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this study.

4.4.4 Error Metric Analysis:

The mixed linear model’s evaluation of error rates in task execution offers vital insights

into how task complexity, robot assistance, and assessment points influence perfor-

mance. The model, based on 130 observations, utilizes an error definition where errors

are the difference between a participant’s errors and the optimal number of errors,

effectively quantifying deviation from the ideal performance. Here are the model’s

findings:

• Baseline Error Rate: The intercept, set at 1.795, represents the average error

rate when other variables are at their baseline (reference) levels. This rate is

statistically significant (p = 0.021), indicating a general level of error present

across all participants irrespective of the task complexity or robot assistance.

Essentially, this baseline rate reflects the average deviation from optimal per-

formance across all participants.

• Task Complexity Effect: The beta coefficient for ‘Task Complexity’ being

‘Complex’ is 3.448 (p = 0.001), signifying that as tasks become more com-

plicated, the average count of errors increases. Participants engaged in more

complicated tasks tend to deviate more from the optimal number of errors com-

pared to simpler tasks.

• Robot Assistance Effect: The coefficient for robot assistance is -0.433 (p =

0.690), though not statistically significant.
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• Assessment Point Effect: The coefficient for the second measurement point

is 4.077 (p < 0.001), indicating that the deviation from optimal performance

increases significantly during the performance of the second troubleshooting

activities. This suggests that errors tend to increase as participants progress in

the task, potentially due to factors like fatigue, reduced concentration, or the

absence of robot assistance during later stages.

• Interaction Effects: The significant interaction effect (β = 5.090, p = 0.001)

between Task Complexity and Robot Assistance implies a combined influence

on error counts. Specifically, in the context of complex tasks without robot

assistance, the average count of errors increases more than in other scenarios.

In summary, the analysis shows a consistent level of error across all participants,

with more complicated tasks leading to a higher count of errors. The absence of robot

assistance is suggested to possibly increase errors, particularly in more complicated

tasks. Over time, there is a trend of increasing errors, and the interaction between task

Complexity and robot assistance is notably significant, emphasizing their combined

impact on task performance.

4.4.5 Total Time on Task (TOT) Analysis:

The mixed linear model’s evaluation of the Total Time on Task (TOT) metric, con-

ducted with 65 observations.

• Baseline TOT: The model’s intercept was established at 1429.401 seconds,

suggesting a significant baseline TOT (p < 0.001). This indicates a substantial
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inherent time spent on tasks by participants before considering the effects of

task complexity and robot assistance.

• Task Complexity Effect: The effect of ‘Task Complexity’ being ‘complex’ on

TOT was significant (β = 553.490, p = 0.013). This implies that participants

spend more time on complex tasks compared to simpler ones.

• Robot Assistance Effect: The absence of robot assistance had a significant

impact on TOT (β = 799.155, p < 0.001), indicating that tasks performed

without robot assistance are associated with an increased TOT. This highlights

the role of robot assistance in reducing the time spent on tasks.

• Interaction Effects: The interaction between Task Complexity and Robot

Assistance was significant (β = −1134.513, p < 0.001). This significant in-

teraction suggests that the combined effect of higher task complexity and the

absence of robot assistance leads to a substantial reduction in TOT. This find-

ing could indicate that the absence of robotic assistance in Complex tasks does

not increase TOT as much as would be expected based on the individual effects

of Complex tasks and the absence of assistance. That is, while both Complex

tasks and the absence of robotic assistance tend to increase TOT, their com-

bined effect is less than the sum of their separate impacts, suggesting some

form of interaction that mitigates the expected increase in TOT for Complex,

unassisted task performances.

• Group Variability: The random effects, indicated by Group Variance, were
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estimated to be 215031.059 minutes2. This suggests considerable variability

in TOT across different groups, highlighting the diversity in how participants

approach tasks.

In summary, the analysis indicates that participants, on average, spend a signif-

icant amount of time on task. The presence of robot assistance and the complexity

of tasks significantly influence the TOT. Particularly, the assistance is more benefi-

cial in reducing time spent on more complex tasks, as evidenced by the significant

interaction effect between task complexity and robot assistance.

4.4.6 Resumption Lag and Interruption Task Time effect on

Errors:

Given initial analyses and their potential implication, we check whether Resumption

Lag and Interruption Task Time affect Error in our analysis. We expand the existing

mixed-effects model for Error to include these two variables as predictors. This will

allow us to assess the impact of Resumption Lag and Interruption Task Time on

Error, while controlling for the effects of Task Complexity, Robot Assistance, and

Measurement Point. Below is a detailed breakdown of these results:

• Intercept: The intercept is near zero and not statistically significant (β =

0.062, p = 0.949). This suggests that when all other variables are at their refer-

ence level, the average error is close to zero, but this finding is not statistically

significant.
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• Task Complexity Effect: The effect of ‘Task Complexity’ being ‘complex’

remains significant (β = 3.308, p = 0.001), indicating that complex tasks are

associated with an increased count of errors.

• Robot Assistance Effect: The effect of robot assistance (absence) is not

statistically significant (β = −0.527, p = 0.612), suggesting that the presence

or absence of robot assistance does not significantly alter the error count.

• Assessment Point Effect: The second measurement point continues to show

a significant increase in errors (β = 4.902, p < 0.001), indicating that errors

increase as the study progresses.

• Interaction Effects: The interaction between Task Complexity and Robot

Assistance is significant (β = 5.558, p < 0.001), indicating a notable combined

effect of the absence of Robot Assistance and a Complex Task on error rates.

• Resumption Lag Effect: The Resumption Lag shows a significant positive

effect on errors (β = 0.173, p = 0.005). This implies that longer resumption

lags are associated with an increase in the count of errors, suggesting that as

participants take more time to resume tasks, they tend to make more errors.

• Interruption Task Time Effect: The effect of Interruption Task Time on

errors is not significant (β = −0.011, p = 0.356). This indicates that the

duration spent on interruption tasks does not significantly impact the count of

errors.

In summary, the expanded model reveals that Resumption Lag has a significant im-
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pact on error rates, with longer lags leading to more errors. However, the time spent

on interruption tasks does not significantly affect errors. The interaction between

complex tasks and the absence of robot assistance remains a significant factor worth

investigating, particularly as it pertains to the different levels of tasks toward the

latter part of the study. Further, errors tend to increase as the study progresses.

4.4.7 Interruption Task Time affects Resumption Lag:

As a consequence of the preceding analyses indicating Resumption Lag’s effect on Er-

rors, and the potential implication, we check whether Interruption Task Time affects

Resumption Lag in our analysis. The model, based on 130 observations, indicates

significant findings as outlined below:

• Intercept: The baseline Resumption Lag is 9.454 seconds, significantly differ-

ent from zero (β = 9.454, p < 0.001), indicating the average lag when all other

variables are at their reference levels.

• Task Complexity Effect: The complexity of the task (‘complex’) does not

significantly affect Resumption Lag (β = 1.009, p = 0.439).

• Robot Assistance Effect: Robot assistance does not have a significant influ-

ence on Resumption Lag (β = 0.394, p = 0.766).

• Assessment Point Effect: A significant decrease in Resumption Lag is ob-

served at the second measurement point (β = −5.464, p < 0.001), suggesting

faster task resumption as the study progresses.
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• Interaction Effects: The interaction between Task Complexity and Robot

Assistance is not statistically significant (β = −2.718, p = 0.148), indicating

a combined effect of the absence of Robot Assistance and a Complex Task on

Resumption Lag.

• Interruption Task Time Effect: A significant positive effect of Interruption

Task Time on Resumption Lag is observed (β = 0.099, p < 0.001). This suggests

that longer interruption times lead to longer delays in resuming the main task.

• Group Variability: The random effects (Group V ariance = 3.412 seconds2)

indicate variability in Resumption Lag across different participant groups.

In summary, this analysis reveals that Interruption Task Time significantly im-

pacts Resumption Lag, with longer interruptions leading to longer lags in task re-

sumption. Other factors, such as Task Complexity and Robot Assistance, do not

exhibit a significant impact on Resumption Lag in this model.

4.4.8 Subgroup Analysis: Effect of Robot Assistance on Error

Rates

Since Interruption Task Time affects Resumption Lag, and Resumption Lag in turn

affects error rates, there appears to be a cascading effect where longer interruptions

not only delay the resumption of work but also potentially degrade the quality of work

due to increased errors. However, there also seems to be a persistent impact of robot

assistance on errors particularly when the task is complex and participants are more
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prone to make errors. Hence, we check whether the effect of Robot Assistance on

Errors varies based on Task Complexity. We conduct an interaction analysis examin-

ing the interaction term between Robot Assistance and Task Complexity in relation

to Error rates. This analysis helps understand if the impact of Robot Assistance on

Errors is different for simpler tasks compared to more complex ones.

Model for Simpler Tasks

• Intercept: Significant at 3.833 errors (p < 0.001), indicating the baseline error

rate for simpler tasks without robot assistance.

• Robot Assistance Effect: The effect of Robot Assistance in the scenario

where there was no Robot Assistance is not statistically significant (β = −0.433,

p = 0.443). This suggests that robot assistance does not significantly impact

error rates in simpler tasks.

• Group Variability: Group V ariance = 0.000errors2, indicating low variability

in error rates across different participant groups in simpler tasks.

Model for Complex Tasks

• Intercept: Significantly higher at 7.281 errors (p < 0.001), indicating a higher

baseline error rate for complex tasks.

• Robot Assistance Effect: The absence of Robot Assistance in the scenario

where there were complex tasks results in significantly increased errors (β =

4.656, p = 0.001). This suggests that robot assistance is particularly beneficial
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in reducing errors in more complex tasks.

• Group Variability: Group V ariance = 3.403 errors2, suggesting higher vari-

ability in error rates across different participant groups in complex tasks.

The subgroup analysis confirms that the role of robot assistance in reducing errors is

much more critical in complex tasks than in simpler ones. This understanding can

guide the effective application of robot assistance, especially in environments where

task complexity varies.

4.4.9 Robotic Assistance Differentially Impacts Errors Accord-

ing to Skill Levels Influenced by Task Complexity:

The mixed linear model’s analysis of error rates across all tasks, with a focus on the

influences of Task Complexity and Robotic Assistance, offers insightful findings. This

model, based on 130 observations, sought to unravel how these factors, along with

proficiency points, contribute to error rates. The baseline error rate, as shown by the

model’s intercept, was 6.371, indicating a significant initial level of errors (statistically

significant compared to zero, p < 0.001).

The analysis explored the main effects and interactions between Task Complexity,

Robot Assistance, and Proficiency Points. The results are as follows:

• Task Complexity Effect: There was a significant increase in error rates for

complex tasks (β = 6.532, p = 0.001), demonstrating that increased task com-

plexity contributes to higher error rates.
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• Robot Assistance Effect: The absence of robotic assistance did not signif-

icantly affect error rates across all tasks (β = −1.996, p = 0.338), suggesting

that robotic assistance, in general, does not have a marked impact on error

rates.

• Interaction Effects: The interaction between Task Complexity and Robot

Assistance was significant (β = 10.553, p < 0.001), indicating a substantial

increase in errors for complex tasks without robotic assistance.

• The influence of Proficiency Points and its interactions with Task Complexity

and Robot Assistance showed mixed results. The interaction involving all three

factors was significant (β = −0.470, p = 0.044), suggesting a nuanced rela-

tionship between proficiency levels, task complexity, and robotic assistance in

influencing error rates.

In summary, this analysis highlights the significant role of task complexity in influenc-

ing error rates, particularly when combined with the absence of robotic assistance.

The interaction effects involving proficiency points indicate a complex interplay of

skill level, task complexity, and the presence or absence of robotic assistance in de-

termining error rates across various tasks.

4.4.10 Learning and Skill Retention: Influence of Robotic As-

sistance and Task Complexity on Proficiency Carryover

The mixed linear model’s examination of proficiency carryover effects, considering

the impact of Task Complexity and Robotic Assistance, offers crucial insights into
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learning and skill retention across tasks. Analyzing data from 65 participants, the

model explored how proficiency achieved with robotic assistance in the first measure

influenced performance in the second measure conducted without such assistance.

The analysis also factored in the participants’ baseline proficiency levels. Key findings

from the model are as follows:

• Baseline Proficiency Effect: Baseline proficiency significantly predicted pro-

ficiency in the second measure (β = 1.081, p = 0.015), indicating that partic-

ipants with higher self-professed initial skill levels tended to maintain higher

proficiency without robotic assistance.

• First Measure Proficiency Effect: A significant positive correlation was ob-

served between proficiency scores in the first and second measures (β = 0.410,

p < 0.001). This finding suggests a notable carryover effect; participants

who demonstrated higher proficiency with robotic assistance continued to show

higher proficiency when the assistance was removed.

• Task Complexity Effect: Task complexity negatively impacted proficiency

in the second measure (β = −2.372, p = 0.026). This result implies that par-

ticipants engaged in more complex tasks experienced a decrease in proficiency

scores in the subsequent unassisted task.

• Robot Assistance Effect: The absence of robotic assistance did not show

a significant impact on second measure proficiency (β = 0.211, p = 0.847),

suggesting that the direct effect of robotic assistance on subsequent independent

task performance was not substantial.
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In summary, this analysis highlights the importance of initial skill levels and the po-

tential benefits of robotic assistance in enhancing proficiency. The significant carry-

over effect observed suggests effective skill acquisition and retention from the assisted

to the unassisted phase. However, the challenge posed by task complexity significantly

affects proficiency, particularly in more demanding tasks. The findings indicate a com-

plex interplay of individual skills, task demands, and the role of assistance in learning

and performance.

4.5 Discussion and Implications

Direct Impact of Resumption Lag on Error Rates

The significant impact of Resumption Lag on error rates underscores the intricate

relationship between task interruption and performance quality, highlighting a mul-

tifaceted issue. Analysis reveals that longer resumption lags after an interruption are

correlated with an increased likelihood of errors, potentially due to cognitive overload

or memory challenges. This direct and significant correlation can be attributed to a

combination of cognitive factors exacerbated by interruptions.

Interruptions impose an additional cognitive load on individuals, consuming men-

tal resources needed for the primary task. This reallocation challenge increases cog-

nitive strain, particularly in tasks requiring high concentration or complex problem-

solving, leading to errors. Additionally, resuming a task necessitates recalling where

one left off and the nuances of the task status. Longer resumption lags may lead to
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a decay in short-term memory retention of task-related details, resulting in critical

omissions or mistakes due to forgotten or misremembered information.

The process of shifting attention between an interruption and the primary task

also plays a role. Longer lags exacerbate the difficulty of this shift, leading to a

fragmented focus and potential overlooking of important task aspects. Moreover,

prolonged delays can disrupt the flow state or deep engagement with a task, making

it challenging to re-establish focused attention and leading to a slower, more error-

prone resumption process.

Emotional responses, such as stress and frustration induced by prolonged interrup-

tions, further impair cognitive function. This impairment particularly affects execu-

tive processes responsible for planning, decision-making, and error detection, thereby

increasing the likelihood of errors.

The direct impact of Resumption Lag on error rates is rooted in a complex in-

terplay of cognitive load, memory challenges, attentional shifts, mental engagement,

and emotional responses. Effectively managing these aspects is crucial for main-

taining high-quality performance, especially in environments where interruptions are

frequent.

Impact of Interruption Task Time on Resumption Lag

The significant positive correlation between Interruption Task Time and Resumption

Lag is a critical element in understanding task management and cognitive function-

ing. Analysis shows that longer interruptions typically result in extended delays
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when resuming the primary task. This relationship stems from a variety of factors

involving cognitive processes and task management. Longer interruptions necessi-

tate a more substantial cognitive shift when transitioning back to the primary task.

This shift, involving a change in mental context, becomes increasingly demanding

and time-consuming with the length of the interruption. The brain must deactivate

the cognitive schema of the interrupting task and reactivate that of the main task,

a process that grows more complex as the interruption extends. Additionally, after

prolonged interruptions, individuals may require extra time for memory refreshing.

This phase, essential for effective task resumption, involves recalling and reassessing

the primary task’s objectives, status, and next steps, consequently adding to the over-

all Resumption Lag. The need for reorientation also grows with longer interruptions.

This process might include reviewing previous work, understanding the context anew,

and planning forthcoming steps, all contributing to the delay in resumption.

Attentional inertia is another factor to consider. The longer one is engaged in

a task, the harder it becomes to disengage from it. Thus, extended interruptions

may create inertia, hindering the swift shift of attention back to the primary task.

Emotional and motivational factors also influence the pace of resuming the primary

task. Lengthy interruptions can lead to feelings of frustration or demotivation, slowing

down the resumption process. Finally, environmental and contextual factors impact

this dynamic. For instance, interruptions that involve moving to a different location

or a significantly different activity may necessitate additional time for physical and

mental realignment before returning to the primary task.

The impact of Interruption Task Time on Resumption Lag is a complex interplay
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of cognitive, emotional, and environmental factors. These insights highlight the im-

portance of effective interruption management and task design to minimize cognitive

shifts and enable quicker task resumption.

Combined Effect on Task Performance

The analysis of task performance in the context of interruptions uncovers a cascad-

ing effect where the duration of interruptions and the subsequent Resumption Lag

collectively influence the overall quality of work. This interconnected relationship

highlights several key aspects of task management and cognitive efficiency.

Extended interruptions often lead to increased Resumption Lag, which in turn

correlates with higher error rates. This pattern indicates that longer interruptions not

only disrupt workflow but also negatively affect the quality of work upon resumption.

The more extended the interruption, the more challenging it becomes for individuals

to transition back to their primary tasks smoothly, leading to an increased likelihood

of errors.

Cognitive discontinuity is another significant consequence of prolonged interrup-

tions. A break from a task can disrupt the cognitive flow of work, impairing the

ability to maintain a consistent thought process or strategy. Consequently, this leads

to mistakes or oversights when the task is resumed, as the brain’s capacity to ‘pick

up where it left off’ diminishes with longer interruptions.

After an interruption, there is a need to reallocate cognitive resources back to the

primary task. If the interruption is prolonged, these resources may be more signif-
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icantly depleted, requiring more effort and time to rebuild the mental model of the

task. Inefficient reallocation can result in poorer task execution and an increase in

errors. Understanding the cascading effect of interruptions on task performance is

vital for task and workflow design. Minimizing interruption duration, providing cues

for quick resumption, and maintaining cognitive continuity can significantly improve

performance quality, especially in high-stakes environments where errors can have

serious consequences. Furthermore, training individuals to handle interruptions ef-

fectively and increasing awareness about their effects can mitigate the negative impact

on task performance. Techniques for rapid task resumption and cognitive realignment,

along with a mindful approach to work disruptions, can enhance performance despite

interruptions.

The combined effect of interruption duration and Resumption Lag on task per-

formance emphasizes the importance of effective interruption management strategies.

By addressing both the interruption duration and the challenges of resuming tasks,

it is possible to maintain higher levels of accuracy and work quality.

Impact of Robot Assistance on Complex Tasks

This study underscores the significant role of robot assistance in enhancing the exe-

cution of complex tasks, particularly those that demand high cognitive effort. This

beneficial impact is rooted in several key functionalities provided by robot assistance.

First, Robot assistance in complex tasks can offer step-by-step guidance, helping

participants navigate through intricate procedures. This assistance is invaluable in
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ensuring critical steps are not overlooked and in reducing the cognitive burden of

remembering and sequencing task components.

Second, Robot assistants can play a crucial role in maintaining or refocusing at-

tention on critical aspects of a task. This support is particularly valuable in tasks

requiring sustained concentration or those with a high risk of distraction.

Third, robotic systems are capable of detecting potential errors in real-time and

alerting participants for immediate correction. This feature is essential in complex

tasks where errors can lead to significant consequences.

Fourth, Robot assistance can be designed to adapt to a participant’s performance,

offering varying levels of support as needed. This adaptability ensures that assistance

is rendered in the most effective manner for each specific task.

In educational or training contexts, robot assistance in complex tasks can expe-

dite skill acquisition and improve skill retention. Learners benefit from immediate

feedback and guidance, which accelerates the learning process.

Proficiency Carryover and the Role of Robotic Assistance

A key finding of our study is the carryover effect of proficiency from tasks performed

with robotic assistance to subsequent tasks performed independently. This result

suggests that skills acquired or honed with the aid of technology are not merely

situational but are internalized by learners to a degree that positively influences their

subsequent task performance. This observation underscores the potential of robotic

assistance not just as a tool for immediate task facilitation but as a catalyst for
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longer-term skill development.

Educational and Training Implications

The study’s results have several implications for the design and implementation of

educational and training programs:

• Blended Learning Approaches: Combining robotic or technological assis-

tance with traditional hands-on methods might be the most effective way to

ensure both immediate performance enhancement and long-term skill retention.

• Gradual Increase in Task Complexity: Educators and trainers should con-

sider progressively increasing task complexity, aligning it with the learner’s

growing proficiency to maximize learning outcomes.

• Assessment-Driven Personalization: Initial assessments should be used

to personalize learning experiences, ensuring that learners are neither under-

challenged nor overwhelmed.

• Focus on Active Learning: To complement the benefits of technological

assistance, educational strategies should emphasize active learning that engages

learners in the process more deeply.

Implications for Design and Application

The positive impact of robot assistance on complex tasks carries significant impli-

cations for the design and application of robotic systems. It indicates that robot
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assistance should be thoughtfully integrated into cognitively demanding tasks, en-

suring that it enhances human performance without adding complexity or creating

dependency. This insight is crucial for developing robotic systems capable of pro-

viding context-sensitive support, dynamically adapting to the user’s needs and the

specific challenges of the task.

Potential for Targeted Interventions

The insights from our study on the dynamics of task interruptions, resumption lags,

and error rates pave the way for targeted interventions. These interventions can be

strategically designed to enhance task performance in environments where interrup-

tions are frequent. The following areas are key targets for such interventions:

• Focusing on strategies to reduce the time needed to resume tasks after in-

terruptions is crucial. This could involve training in quick mental refocusing

techniques, implementing structured pause-and-resume protocols, or utilizing

technology aids like automated reminders or contextual cues.

• Managing the duration of interruptions is vital for minimizing their impact.

Strategies could include establishing guidelines for the allowable length of inter-

ruptions or creating systems that postpone non-urgent interruptions to a more

suitable time.

• Altering the nature of interruptions to make them less disruptive is another

effective approach. This might entail changing the mode of interruption delivery
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(e.g., using visual instead of auditory cues) or ensuring that interruptions are

relevant and require minimal cognitive shift.

• Customizing interventions based on the complexity of tasks is important, as the

impact of interruptions varies with task complexity. For more complex tasks,

a greater focus on tools and techniques that support cognitive continuity and

error reduction is beneficial.

• In contexts where robot assistance is employed, optimizing this assistance based

on the task’s nature and typical interruption patterns can be effective. This

might involve programming the robot assistant to offer more targeted support

during and after interruptions, particularly in complex tasks.

• Developing training programs that focus on interruption management can pro-

vide individuals with the skills to more effectively handle interruptions. These

programs could cover cognitive strategies for task resumption, stress manage-

ment techniques, and efficient use of technology aids.

• Implementing feedback mechanisms for monitoring and improving interruption

management strategies can be beneficial. Regular reviews and adjustments

based on employee feedback can help refine these interventions for greater ef-

fectiveness.
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Summary

In this chapter, we explored the impact of interruptions on task performance, the

potential of robot assistance as a mitigating factor, and the role of targeted interven-

tions and in managing these challenges. The insights garnered from our study not

only illuminate the complexities inherent in task interruptions and resumption but

also chart a path forward for effectively countering their adverse effects.

We have explored how interruptions, a seemingly inevitable aspect of modern

work environments, can significantly prolong resumption lags and elevate error rates,

thereby impacting overall task performance. In response, we have highlighted the

potential of robot assistance as a buffer against these effects, particularly in complex

tasks where precision and focus are paramount.

Furthermore, the chapter has underscored the importance of designing targeted

interventions to specifically address different facets of interruption impacts. These in-

terventions range from training programs and workflow adjustments to the integration

of technology tools designed to facilitate quick task resumption and effective interrup-

tion management. By customizing these interventions to individual needs and task

complexities, we can significantly enhance task performance and reduce error rates.

A significant takeaway from our investigation is the affirmation of a proficiency

carryover effect. This effect, observed from tasks performed with robotic assistance to

those undertaken independently, highlights the potential of such technologies to not

only aid in immediate task execution but also to facilitate lasting skill acquisition.

The implication here is significant, suggesting that robotic assistance, when properly
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integrated into learning environments, can serve as a powerful tool in the educational

toolkit, one that extends its utility beyond immediate task facilitation to long-term

skill development.

In conclusion, this chapter contributes to a deeper understanding of the dynam-

ics of task interruptions and lays the groundwork for innovative strategies to miti-

gate their impact. The integration of robotic assistance, targeted interventions, and

privacy-centric technology design offers a comprehensive approach to enhancing task

performance in interruption-prone environments.
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Chapter 5

Social Robot Design: Fostering Trust
with Integrated Privacy and Ethics

In the dynamic landscape of technological advancement, the broader implementation

of robotics is not just a testament to human ingenuity but also a reflection of our

relentless pursuit of innovation. As these robotic systems become increasingly inter-

woven into the fabric of our daily lives, spanning domains from healthcare to home

assistance, the urgency to confront the growing concerns related to ethics and privacy

escalates. Chapter 5 of this dissertation explores these pivotal issues, shedding light

on the multifaceted factors that influence the adoption of robots while emphasizing

the paramount importance of privacy and ethical design in their seamless integration.

Drawing on the seminal works of Dwork and Roth (2014) and Rueben et al. (2018),

we seek to construct an understanding and strategic approach to these evolving chal-

lenges.

The advent of robotics has opened new horizons, redefining how we interact with

machines and envisage our future. Yet, this progression is intertwined with its own

set of complexities. As robots evolve to assume increasingly intricate roles, navigating
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through a vast sea of data, the spotlight on individual privacy and the ethical impli-

cations of data usage intensifies. The discourse on the ethical facets of data handling

in robotics, as explored in Schafer and Edwards (2017), offers valuable insights into

this relationship between technology and ethics.

A key aspect of this exploration lies the concept of differentially private algorithms,

an innovation in the realm of privacy-preserving technology. These algorithms rep-

resent more than a technological breakthrough; they symbolize a paradigm shift in

how we approach data analysis. By introducing a measure of ‘noise’ into the data

or the queries made on the data, these algorithms veil individual contributions, safe-

guarding privacy without substantially compromising the integrity of the analysis.

This methodology paves the way for informed decision-making, leveraging collective

insights while staunchly defending the sanctity of individual data subjects’ privacy.

The potential of differentially private reinforcement learning in complex scenarios,

as highlighted by Zhou (2022), further amplifies the significance and applicability

of these advanced techniques. The incorporation of these algorithms into robotic

systems is supports harnessing the power of data-driven technologies and upholding

protections for individual privacy, a balance emphasized by the findings of Rueben

et al. (2018) and Zhou (2022).

5.1 The Need for Privacy in Robotics

Robotic systems, equipped with advanced sensors and data processing capabilities,

are capable of gathering a vast array of personal and sensitive information. This data
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spectrum includes visual and audio recordings, location tracking, biometric data, and

detailed insights into personal habits and preferences. The collection, processing, and

potential dissemination of such data raise profound privacy concerns, necessitating a

careful examination of data storage and usage practices (Eick and Antón, 2020).

The significance of privacy in robotics is further accentuated when considering the

operational environments of these systems. Robots often operate in intimate prox-

imity to humans, whether in healthcare settings, where they may handle sensitive

patient information, or in homes, where they could observe private family interac-

tions. This close interaction necessitates robust privacy measures to prevent misuse,

unauthorized access, or inadvertent privacy breaches (Priyadarshini, 2018).

Addressing privacy in robotics transcends technical solutions. The responsibility

to protect individual privacy is a collective one, encompassing designers, manufac-

turers, those who deploy them as well as those who interact with them. Moreover,

the public’s trust and acceptance of robotic systems are significantly influenced by

privacy and ethical considerations. Privacy concerns can markedly impact individu-

als’ willingness to adopt and interact with robotic technologies, making it essential

to address these issues to build trust and foster positive human-robot interactions

(Priyadarshini, 2018; Kok and Soh, 2020).

A key challenge in the realm of privacy in robotics is balancing the protection of

privacy with the utility of data. Robotic systems rely on data to function effectively,

and overly restrictive data practices could hinder their performance. Striking an opti-

mal balance is crucial, and this section will explore strategies to achieve this, including

the adoption of ‘Privacy by Design’ principles, the use of anonymization and data min-

205



imization techniques, and the implementation of privacy-preserving technologies such

as differentially private algorithms. These strategies aim to create robotic systems

that respect privacy while fulfilling their intended purposes (Eick and Antón, 2020).

As we navigate the intricate landscape of privacy in robotics, it becomes clear

that addressing privacy concerns is not just a technical endeavor but also an ethical

and societal necessity. By proactively engaging with these challenges, we can protect

individual rights and foster the trust and acceptance needed for the harmonious in-

tegration of robotics into society, setting the stage for a future where technology and

privacy coexist in harmony (Hale et al., 2019).

5.2 The Anonymity Assessment method: Applica-

tion in AI and Robotics

The “Anonymity Assessment” method delineated Kolain et al. (2021) offers a frame-

work for evaluating the anonymity of datasets within the context of GDPR compli-

ance, with a particular emphasis on the realm of smart robotics. This approach merges

legal and technical insights to ascertain if data processing aligns with the GDPR’s

definition of anonymity, facilitating a robust assessment of data anonymization and

pseudonymization processes.

The methodology introduces two pivotal metrics: the Objective Anonymity Score

(OAS) and the Subjective Anonymity Score (SAS), which collectively forge a dual-

faceted lens through which the anonymity of data is scrutinized. The OAS quantifies
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the risk of re-identification through statistical analysis, leveraging data character-

istics and processing context to gauge the probability of individual identification.

Concurrently, the SAS delves into the subjective considerations of data controllers or

processors, evaluating the feasibility of re-identification in terms of required resources,

efforts, and associated costs. This metric reflects an assessment of re-identification

risks, acknowledging the diverse capabilities and motivations that may influence such

endeavors.

By amalgamating these metrics, the Anonymity Assessment method provides a

tool for assessing data anonymity. The OAS and SAS, in concert, offer an evaluation

that not only quantifies re-identification risks but also contextualizes these risks within

the practical realities of data handling. This synergy between objective statistical

measures and subjective practical assessments ensures an adaptive approach to data

anonymity, aligning closely with the GDPR’s requirements for data protection and

privacy.

This method highlights the interdisciplinary collaboration necessary to navigate

the complexities of GDPR compliance, particularly in technologically advanced areas

such as AI and robotics. By translating legal mandates into quantifiable, actionable

metrics, the Anonymity Assessment method bridges the gap between theoretical legal

standards and the practical challenges of ensuring data anonymity in an era of rapid

technological advancement. It underscores the importance of a flexible, informed

approach to data protection, advocating for continuous adaptation to technological

innovations and their implications for data privacy.
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5.3 Ethical Considerations in Robotic Data Handling

This section explores the ethical issues surrounding robotic data handling, concen-

trating on foundational principles such as transparency, accountability, and respect

for individual autonomy. Transparency stands as a cornerstone ethical principle in

the realm of robotic data handling. It encapsulates the imperative of lucidly com-

municating to users the modalities of data collection, processing, and utilization by

robotic systems. The essence of transparency lies in nurturing trust and ensuring

that users are not only cognizant of but can also meaningfully consent to the data

practices entwined with their interaction with robots.

The design of robotic systems should prioritize user access to comprehensible and

transparent information regarding their data practices. This encompasses illuminat-

ing the spectrum of data being amassed, the objectives of its utilization, and the

safeguards in place for its protection. Transparency further extends its reach, neces-

sitating that users are furnished with insights into the decision-making mechanisms of

robots, particularly when these decisions bear significant implications for individuals.

Accountability in robotic data handling denotes the onus placed on the shoulders

of designers, manufacturers, and operators of robotic systems to ensure ethical and

regulatory-compliant data management. Robotic systems ought to be crafted and de-

ployed with mechanisms that facilitate the traceability and auditing of data handling

processes. Such mechanisms ensure that should issues emerge, they can be accu-

rately traced to specific entities or actions, enabling the implementation of corrective

measures. Accountability also mandates the establishment of coherent policies and

208



procedures to adeptly respond to privacy breaches, encompassing the notification of

affected individuals and the initiation of harm mitigation strategies.

Respect for individual autonomy in robotic data handling is about acknowledg-

ing and venerating individuals’ sovereignty over their personal information. Robotic

systems must be architected to gather and utilize data in a manner that honors the

preferences and decisions of individuals. This entails securing explicit consent for

data collection and empowering users with the autonomy to regulate the scope of

their data’s utilization. Moreover, robotic systems should eschew manipulative or co-

ercive tactics in data collection and usage. Upholding respect for autonomy acquires

heightened significance in sensitive domains such as healthcare, education, or per-

sonal assistance, where the data involved is inherently intimate and carries significant

implications for individuals’ lives.

5.4 Regulatory and Legal Frameworks for Privacy in

Robotics

The legal environment that envelops privacy in robotics is a mosaic of laws and

regulations, each distinct in its scope and application, varying significantly across

regions and domains Malchik and Feigenbaum (2022). While certain jurisdictions

have enacted specific privacy laws that directly addresses data collection and usage by

robotic systems, others rely on broader data protection statutes like the General Data

Protection Regulation (GDPR) in the European Union to scaffold privacy protections
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in the context of robotics (Adéníran, 2021).

These laws contain key provisions like data minimization, purpose limitation, con-

sent, transparency, and robust security measures. For manufacturers and operators of

robotic systems, navigating these legal currents is not an option but a mandate. Com-

pliance is not merely a legal obligation but a cornerstone for maintaining reputation

and trust. Non-compliance, conversely, can lead to severe repercussions, including

hefty penalties and reputational damage.

The legal and regulatory tapestry directly influences the deployment of differen-

tially private algorithms in robotics. These algorithms, by their very design, provide a

mechanism to analyze data in a manner that respects and protects individual privacy,

aligning seamlessly with legal mandates for privacy and data security (Malchik and

Feigenbaum, 2022).

Employing differentially private algorithms enables robotic systems to adhere to

legal stipulations regarding data minimization and purpose limitation. By ensur-

ing that data collection and usage are confined to what is strictly necessary, and

by safeguarding individual privacy, these algorithms also support compliance with

transparency and consent directives, rendering data privacy protections both clear

and comprehensible (Adéníran, 2021).

Staying abreast of legal developments and proactively adapting privacy-preserving

methodologies will be paramount for the robotics community. This proactive stance

ensures that as robotic technologies continue to advance and permeate more deeply

into our societal fabric, they do so in a manner that is not only legally compliant but

also ethically sound and socially responsible.
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5.5 Design Principles for Privacy-Aware Robotics

The inception of privacy-aware robotics necessitates a principled design approach

that embeds privacy considerations inherently within the system development pro-

cess. This section outlines pivotal design principles that should be at the forefront of

the creation of privacy-conscious robotic systems, complemented by real-world appli-

cations and illustrative examples that demonstrate the potential application of these

principles across diverse robotic applications.

Principle 1: Privacy by Design

Privacy by design champions the proactive embedding of privacy into the design

and architecture of robotic systems from the very beginning. It advocates for the

concept of privacy as a default setting and integral component of system development,

incorporating data minimization, clear purpose specification, and privacy-by-default

settings.

Real-World Application - The Whiz in Retail: Rindfleisch et al. (2022) provides

a detailed case study of a robot’s deployment in a Japanese retail chain, Daiei. The

Whiz, an AI-enabled vacuum cleaning robot, not only enhances store hygiene but

also engages in subtle promotional activities. Importantly, the case study highlights

the robot’s design and operational protocol that prioritizes customer privacy. The

Whiz operates autonomously, minimizing interaction with customers and ensuring

that no sensitive personal data is collected during its cleaning or promotional tasks.

This adherence to the ‘Privacy by Design’ principle is instrumental in maintaining the

trust of both customers and employees, as indicated by the positive feedback received.
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Insights into Practical Deployment and Challenges: Deploying the Whiz in Daiei

stores offered valuable insights into the practical implementation of privacy-aware

robotics in a retail environment. While the robot’s design ensures minimal invasion of

customer privacy, the case study also discusses challenges such as navigating complex

store layouts and avoiding disruptions during peak hours. Addressing these challenges

required continuous refinements in the robot’s operational algorithms, showcasing

the dynamic nature of integrating privacy-aware principles with practical robotic

functionality. The success of the Whiz robot in Daiei stores exemplifies how privacy

considerations can be seamlessly integrated into robotic technology, striking a balance

between operational efficiency and ethical considerations.

Principle 2: Transparency and User Consent

Transparency regarding data processing activities and the securing of informed

user consent are foundational to fostering trust. Users should be adequately informed

about the nature of data collection, its usage, and sharing provisions. Consent must

be explicit, well-informed, and unequivocally given.

Real-World Application - Transparent Data Acquisition with Robots in Healthcare:

A study by Boumans et al. (2019) provides an insightful exploration into the use

of social robots for collecting patient-reported outcome measurements among older

adults. The research demonstrates a novel use of the Pepper robot in a clinical out-

patient setting to autonomously administer patient-reported outcome measurements

questionnaires to older adults, a process traditionally conducted by healthcare profes-

sionals. This application highlights the robot’s role in transparently acquiring health

data while respecting the autonomy and privacy of the individuals involved.
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The Pepper robot, designed to interact in a human-like manner, ensured that par-

ticipants were informed about the nature of the data collection process. Participants

were given clear instructions and dialogue options displayed on the robot’s screen, al-

lowing them to provide data in a controlled and consensual manner. The study found

that the interaction with the robot was well-received by participants, indicating a

positive perception of transparency and user consent in the data collection process.

Furthermore, the robot’s ability to complete interviews autonomously in most

cases (92.8% of interactions) while maintaining data quality comparable to that ob-

tained by healthcare professionals showcases the potential of robotic systems to sup-

port healthcare services transparently and effectively. Participants’ feedback on the

acceptability of using the robot for clinical interviews further emphasizes the impor-

tance of user consent and comfort in the adoption of such technologies (Boumans

et al., 2019).

This real-world application underlines the significance of integrating transparency

and user consent into the design and operation of privacy-aware robotic systems,

especially in sensitive settings such as healthcare. The study’s findings reinforce the

notion that with clear communication and consent protocols, robots can play a pivotal

role in data acquisition, contributing to efficient healthcare delivery while respecting

patient privacy and autonomy.

Principle 3: Data Security and Anonymization

Robust data security protocols and anonymization techniques are imperative for

safeguarding the data collected by robots. This involves the application of encryp-

tion, secure data storage solutions, and sophisticated anonymization procedures to
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prevent the re-identification of individuals. The intricate balance between data utility

and privacy is eloquently addressed by Kolain et al. (2021) through their pioneering

approach of Anonymity Assessment, which merges legal and technical perspectives to

enhance data protection in the field of smart robotics.

Real-World Application - Anonymity Assessment in Smart Robotics: The study by

Kolain et al. (2021) proposes a comprehensive Anonymity Assessment method, laying

out a dual framework with the Objective Anonymity Score (OAS) and the Subjective

Anonymity Score (SAS) to evaluate the degree of privacy protection in data sets. This

method is not only pivotal in evaluating the anonymity of data but also serves as a

tool for navigating the complex landscape of cross-national legal regimes (Adéníran,

2021), thereby ensuring global compliance with varying legal standards related to

data privacy and security.

In a scenario where a robotic system operates across international jurisdictions,

the Anonymity Assessment becomes a critical tool. It enables developers and legal

practitioners to quantify the risk of re-identification, thereby operationalizing the legal

concept of anonymization in a technical format. This approach not only enhances the

data security and anonymization capabilities of robotic systems but also ensures that

these systems are designed and operated in compliance with international privacy

regulations, fostering trust among users and stakeholders.

For example, a healthcare robot collecting patient data can employ this method-

ology to ensure that the data it processes is sufficiently anonymized, meeting the

standards of the GDPR while also being adaptable to other international legal frame-

works. This adaptability is crucial in a global context where data protection laws
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may vary significantly from one country to another.

By integrating the Anonymity Assessment methodology into the design and oper-

ation of robotic systems, developers can navigate the intricate matrix of data privacy

laws and technical challenges. This comprehensive approach, as suggested by Han-

neke et al. (2023) ensures that robotic systems not only respect privacy but also

maintain data utility, paving the way for international deployment and acceptance.

Principle 4: Accountability and Compliance

In the realm of privacy-aware robotics, engineering systems with accountability

mechanisms is paramount to ensure strict adherence to prevailing privacy laws and

frameworks. This principle is particularly crucial when robotics systems operate

across different national jurisdictions, each with its distinct legal requirements related

to data privacy and security. The pioneering work by Kolain et al. (2021), along

with insights into the intricacies of cross-national legal regimes by Adéníran (2021),

provides a comprehensive framework for embedding accountability and compliance

into the fabric of smart robotics.

Real-World Application - Enhanced Compliance in International Robotic Opera-

tions: Consider the case of a robotic delivery service that operates globally, navigating

the complex web of international data protection laws. Employing the Anonymity

Assessment methodology allows the service to systematically assess and quantify the

risk of data re-identification through the Objective Anonymity Score (OAS) and the

Subjective Anonymity Score (SAS). This assessment ensures that the data processed

by the robotic system meets the high standards of anonymity required by GDPR and

other stringent data protection laws.
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Moreover, understanding the complexities of cross-national legal regimes is instru-

mental for the robotic service to dynamically adapt its data handling practices and

privacy measures to comply with the specific legal requirements of each jurisdiction it

operates in. This adaptive compliance strategy not only safeguards the privacy and

security of the data but also fortifies the robotic service’s position as a trusted entity,

capable of maintaining high standards of accountability across international borders

(Khattar, 2023).

In addition to proactive compliance measures, the robotic delivery service imple-

ments a comprehensive incident response plan, drawing upon best practices and legal

guidelines from various jurisdictions (Khattar, 2023). This plan delineates clear pro-

tocols for prompt and effective action in the event of a data breach, ensuring that

potential damages are minimized and the trust of users and stakeholders is preserved.

By integrating advanced methodologies like Anonymity Assessment and adapting

to the multifaceted nature of international privacy laws, the robotic delivery service

exemplifies the essence of Principle 4. This approach not only ensures robust data

privacy and security but also underscores the commitment of the service to uphold the

highest standards of accountability and compliance in an increasingly interconnected

and legally diverse world.

Principle 5: User Empowerment and Control

User empowerment concerning personal data is a pivotal aspect of privacy-aware

robotics, especially in the context of social robots that interact closely with individuals

in sensitive settings. Social robots, like Robbie, are designed to engage with users in

a personalized manner, making it essential that they provide accessible tools for users
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to review, modify, and delete their personal information, and maintain autonomy over

the decision-making process regarding data use. This principle is crucial in realizing

the concept of Privacy-Sensitive Empowerment (PSE) in technology-assisted care, as

discussed by Welsch and Buhr (2022), which calls for a harmonious balance between

empowering individuals and safeguarding their privacy.

Real-World Application - Empowerment and Privacy in Dementia Care with So-

cial Robots: In the specific case of dementia care, social robots like Robbie present

a unique set of opportunities and challenges. The role of Robbie as a Monitoring

and Assistive System (MAS) in care settings involves a delicate interplay between

providing support, enhancing safety, and maintaining the privacy and dignity of peo-

ple with dementia. The concept of PSE, as introduced by Welsch and Buhr (2022),

emphasizes the integration of empowerment strategies with a deep respect for the

bodily-topological and intimacy-decisional dimensions of privacy in the use of such

technologies.

For example, Robbie may offer functionalities to assist people with dementia in

their daily activities and promote social interaction. However, it is crucial that Robbie

also upholds the principles of PSE by ensuring that any data collection and processing

activities are transparent, consensual, and respect the informational, topological, and

decisional dimensions of privacy. This means that Robbie should be equipped with

interfaces that allow people with dementia or their authorized caregivers to easily

understand, control, and manage the extent of data collection and usage, aligning

with their preferences and consent.

In practice, designing Robbie and similar social robots to embody the principle of
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PSE involves a user-centric approach. This approach respects the relational aspects

of care, ensuring that the technological functionalities of the robot do not overshadow

the importance of human dignity, autonomy, and intimacy. It fosters an environment

where technology serves as an enabler of better care, rather than a source of intrusion

or discomfort.

By emphasizing User Empowerment and Control, and incorporating the under-

standing of PSE, social robots like Robbie can navigate the complex landscape of

dementia care. This ensures that while these robots provide valuable assistance and

companionship, they also staunchly uphold the values of privacy, autonomy, and re-

spect that are fundamental to ethical care practices.

In this section, we have navigated the critical design principles essential for foster-

ing privacy-aware robotics. These principles—Privacy by Design, Transparency and

User Consent, Data Security and Anonymization, Accountability and Compliance,

and User Empowerment and Control—serve as the foundational pillars for integrat-

ing ethical and privacy considerations into the fabric of robotic systems.

Through the exploration of real-world applications and illustrative examples, we

have demonstrated the practical implications and the paramount importance of these

principles. From ensuring data security through Anonymity Assessment to navigat-

ing the complexities of cross-national legal frameworks, and empowering users with

control over their personal data in sensitive environments, these principles collectively

guide the responsible development and deployment of robotics.

The application of these principles goes beyond mere compliance with legal stan-

dards; it is about embedding ethical values into the core of robotics technology. By
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adhering to these principles, robotic systems can not only enhance operational ef-

ficiency but also champion the rights and dignity of individuals, earning trust and

acceptance from users and society at large.

In traversing the landscape of design principles for privacy-aware robotics, we

have uncovered the pivotal role these principles play in weaving privacy into the very

fabric of robotic systems. Principles such as Privacy by Design, Transparency and

User Consent, Data Security and Anonymization, Accountability and Compliance,

and User Empowerment and Control are not standalone concepts but are deeply

interconnected, each reinforcing the others to create a comprehensive approach to

privacy. These principles, when implemented, address the challenges and fulfill the

requirements discussed in earlier sections, bridging the gap between theoretical ethics,

practical functionality, and legal compliance.

However, the journey of integrating these principles into the design and opera-

tion of robotics is marked by complexities and continuous evolution. As we look to

the future, the field of privacy-aware robotics is poised for further innovation and

transformation. Emerging technologies, evolving design methodologies, and shifts in

regulatory landscapes will undoubtedly shape how these principles are actualized in

practice. The insights and applications discussed here lay a strong foundation, but

they also invite ongoing dialogue, reflection, and collaboration among technologists,

legal experts, ethicists, and the broader community. As we advance, the commitment

to privacy-aware design in robotics will remain a guiding beacon, ensuring that as

robotic technologies progress, they do so with respect for privacy, ethical integrity,

and societal trust at their core.
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5.6 Differentially Private Algorithms: An Approach

to Enhancing Privacy in Robotics

Differential Privacy (DP) is a system for safeguarding individual information within

data sets. DP is a mathematical framework employed to enhance the privacy of

algorithms. It does this by adding controlled noise, that is carefully calibrated to

balance privacy with data utility, to data queries. DP therefore prevents the precise

inference of individual information from aggregated data, ensuring that the risk of

identifying an individual is minimally impacted by their data’s inclusion or absence.

This makes it ideal for organizations needing to analyze sensitive data without reveal-

ing personal information. This approach is vital for government agencies handling

sensitive information, as it allows for the extraction of meaningful insights without

compromising individual privacy. Essentially, DP maximizes query accuracy from

statistical databases while minimizing identification risks. It ensures that the ad-

dition or removal of a single item in a database has a negligible effect on analysis

outputs, safeguarding individual data privacy. This preservation of privacy fosters

trust in technology, as users are assured of their information’s confidentiality.

Definition 1 (ϵ-differential privacy, Dwork and Roth (2014):) A random-

ized mechanism M gives ϵ-differential privacy if, for all neighboring datasets D, D′,

and all events S ⊂ Range(M),

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S).
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Depending on the context, two datasets are called neighboring if one could be

obtained from the other by (Drechsler, 2023):

(a) adding or removing a single record (unbounded DP), or

(b) changing the values of one record, while keeping the size of the database fixed

(bounded DP).

An adaptation of the underpinnings of DP is Local Differential Privacy (LDP), which

takes this a step further by randomizing data directly on a user’s device, offering

immediate data protection before it is even shared or analyzed. This method is par-

ticularly useful for apps or services where user trust is paramount. There is subsequent

implementation of the underpinnings of DP, i.e., CDP. Central Differential Privacy

(CDP) contrasts with LDP by centralizing data processing. Here, data is collected in

its original form and then anonymized in a central location. This approach is often

used by larger organizations or researchers who need more precise data analysis while

still maintaining privacy.

In the comparative analysis of LDP and CDP, Bernau et al. (2021) highlight

key differences. LDP, with its data randomization at the user’s device, offers strong

privacy protection but can lead to reduced data accuracy. This makes LDP ideal

for scenarios where user privacy is paramount. CDP, conversely, provides better

data accuracy since the noise addition happens after data aggregation, making it

suitable for situations where detailed, accurate data analysis is required. However,

this can sometimes result in slightly weaker individual privacy protections compared

to LDP. While LDP can lead to reduced data accuracy and CDP offers better data
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accuracy, the trade-offs are more nuanced and depend on specific implementation

and context. Bernau et al. (2021) emphasizes these trade-offs, suggesting the choice

between LDP and CDP depends on the specific privacy and data utility requirements

of the application.

The paper by Erlingsson et al. (2019) transitions from Local Differential Privacy

(LDP) to Central Differential Privacy (CDP) through shuffling. LDP protects data at

the source by randomizing it on the user’s device. Shuffling further anonymizes this

data, effectively blending individual contributions before analysis to prevent specific

user linkage. This technique significantly enhances privacy by reducing the privacy

budget, a measure of privacy loss, thereby offering stronger protections than LDP.

The paper outlines an algorithmic approach for processing data under LDP and tran-

sitioning to CDP through shuffling, demonstrating how this method acts as a bridge

between LDP and CDP to enhance data privacy in differential privacy models. This

approach is particularly beneficial for researchers seeking data and participants pro-

viding data, ensuring greater privacy protection. In scenarios involving robots that

capture and process information for researchers, the transitioning from LDP to CDP

through shuffling can be a technique for ensuring privacy in robotics. The clarity

of privacy, particularly on the part of the user may contribute to improved public

perception of robotics and user privacy.
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5.7 Community Engagement and Public Perception

The acceptance and success of privacy-aware robotic technologies are heavily influ-

enced by public perception and community engagement. This section discusses the

crucial role these factors play in the development and deployment of robotic systems

that prioritize privacy, drawing insights from Schulz and Herstad (2018). Under-

standing and actively engaging with public concerns and perceptions can significantly

impact the adoption and trustworthiness of these technologies.

Public perception of robotic technologies is shaped by a variety of factors, includ-

ing media portrayal, personal experiences, cultural attitudes, and awareness of privacy

issues. Negative perceptions, often stemming from concerns about privacy, security,

and the potential misuse of data, can hinder the acceptance and widespread adoption

of robotic technologies. Conversely, positive perceptions, fostered by transparency

and demonstrations of privacy protection, can enhance trust and acceptance.

Educational initiatives and public awareness campaigns play a significant role in

shaping perceptions by providing accurate information about the capabilities and pri-

vacy safeguards of robotic technologies. These efforts help demystify the technology

and address common misconceptions, as highlighted in the sociotechnical approach

(Malchik and Feigenbaum, 2022).

Community engagement involves actively involving stakeholders, including poten-

tial users, privacy advocates, and regulatory bodies, in the development and deploy-

ment process of robotic technologies. This engagement can take various forms, such

as public consultations, collaborative design processes, and pilot programs. Engaging
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with communities allows developers to understand and address the specific privacy

concerns and needs of different groups. It also provides an opportunity to demon-

strate the practical benefits and privacy protections of the technology, fostering a

sense of ownership and acceptance among the community.

Successful examples of community engagement initiatives demonstrate their effec-

tiveness in building trust and acceptance. For instance, a pilot program for a robotic

delivery service in a residential area might involve community meetings to discuss

privacy and safety concerns, demonstrations of the technology, and a feedback mech-

anism for residents to share their experiences and suggestions. Similarly, collaborative

design processes for educational robots can involve teachers, students, and parents in

decision-making, ensuring that the final product aligns with the privacy expectations

and educational needs of the community.

Looking forward, the landscape of community engagement and public perception

will continue to evolve, influenced by advancements in technology, shifts in societal

values, and changing privacy landscapes. Developers and manufacturers of robotic

systems must remain agile and responsive to these changes, continuously seeking to

understand and address the concerns of the community while fostering an environ-

ment of trust and acceptance. The insights and strategies discussed here provide a

foundation for navigating these complex dynamics, but they also highlight the need for

ongoing dialogue, collaboration, and adaptation as we strive to ensure that robotics

technologies are not only technologically sophisticated but also socially embraced

and ethically aligned, as underscored by the principles and approaches in (Schulz and

Herstad, 2018) and (Malchik and Feigenbaum, 2022).
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5.8 Summary and Reflections

This chapter has explored the challenges and opportunities presented by the inte-

gration of privacy and ethics in the field of robotics. As robotics continue to evolve

and become more ingrained in our everyday lives, the importance of addressing these

issues becomes increasingly apparent.

5.8.1 Summary of Key Points

• The Need for Privacy in Robotics: We discussed the privacy challenges

inherent in robotic data collection and processing and the impact of public

perception and legal frameworks on the adoption and use of robotics.

• Differentially Private Algorithms: The use of differentially private algo-

rithms, especially the transition from LDP to CDP via shuffling, can be useful.

These algorithms balance user privacy with robotic functionality. Robots of-

ten collect sensitive data, and these algorithms ensure this data is handled

responsibly, maintaining privacy without compromising the robots’ operational

efficiency. Implementing such privacy-centric approaches in robotics not only

bolsters user trust but also aligns with ethical standards for data handling, fos-

tering a more responsible and trustworthy environment in data-sensitive robotic

applications.

• Ethical Considerations: We examined the ethical implications of data han-

dling by robots, emphasizing the importance of principles like transparency,

accountability, and respect for individual autonomy.
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• Regulatory and Legal Frameworks: The analysis of the legal and regulatory

environment related to privacy in robotics underscored its implications for the

use of differentially private algorithms and the design of privacy-aware systems.

• Design Principles for Privacy-Aware Robotics: This section presented

key design principles essential for privacy-aware robotics. To illustrate their

application in real-world settings, we delve into a more detailed hypothetical

scenario where a robotic system undergoes a privacy impact assessment. This

process identifies potential privacy risks and implements design solutions such

as encrypted data storage, user-accessible privacy settings, and automated con-

sent protocols. For instance, a robotic system developed for retail inventory

management could use encrypted communications to safeguard data about cus-

tomer purchasing trends and store layouts. It could also feature a user interface

that allows store employees to control what data is shared with corporate an-

alytics departments, ensuring that privacy is maintained at both the customer

and employee levels.

• Community Engagement and Public Perception: The importance of pub-

lic perception and community engagement in the acceptance of privacy-aware

robotic technologies was discussed, highlighting the need for educational initia-

tives and collaborative design processes.
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5.8.2 Recommendations for Future Research

• Advanced Privacy-Preserving Techniques: Continued research into ad-

vanced privacy-preserving techniques, such as differentially private algorithms,

is essential. This includes exploring their application in more complex and

diverse robotic scenarios.

• Interdisciplinary Approaches: Future research should adopt interdisciplinary

approaches, combining insights from technology, law, ethics, and social sciences,

to address the multifaceted nature of privacy and ethics in robotics.

• Human-Centric Design: Emphasis should be placed on human-centric design

principles that prioritize user needs, preferences, and privacy concerns in the

development of robotic systems.

• Legal and Regulatory Evolution: Research should also focus on the evo-

lution of legal and regulatory frameworks to keep pace with technological ad-

vancements in robotics, ensuring adequate protection of privacy and ethical

standards.

• Community Engagement and Education: Further exploration of methods

for effective community engagement and public education about privacy-aware

robotics is needed to enhance public trust and acceptance.

The exploration of privacy and ethics in robotics, as discussed in this chapter, under-

scores the multifaceted and dynamic nature of this field. The integration of privacy-

aware design principles, the adoption of advanced privacy-preserving techniques, and
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the commitment to ethical considerations represent not just responses to technologi-

cal challenges but also a societal imperative for the responsible use of robotics. The

interconnectedness of technical, ethical, legal, and societal aspects demands an inter-

disciplinary approach and a global perspective, acknowledging the diverse implications

across different cultures and jurisdictions.

As we stand at the intersection of rapid technological advancements and evolv-

ing societal expectations, the field of privacy and ethics in robotics requires adaptive

and forward-looking strategies. The recommendations for future research provide a

roadmap for navigating this complex landscape, emphasizing the need for advanced

privacy-preserving techniques, interdisciplinary collaboration, human-centric design,

adaptive legal frameworks, and proactive community engagement. Emerging tech-

nologies and trends, such as AI and autonomous systems, further accentuate the

importance of staying vigilant and responsive to the changing dynamics of privacy

and ethics in robotics.

The journey of integrating privacy and ethics into robotics is ongoing, marked

by continuous learning, innovation, and collaboration. As we move forward, it is

imperative to embrace this journey with a commitment to creating robotic systems

that are not only technologically advanced but also ethically sound, legally compliant,

and socially accepted. The future of privacy-aware robotics is not just a reflection

of our technological capabilities but also a testament to our collective values, vision,

and responsibility towards society.

—————————————————————————————–
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Chapter 6

Synthesis and Future Directions

6.1 Introduction

This chapter aims to integrate and synthesize the findings of this dissertation, draw-

ing connections between the varied yet interconnected themes.

To set the stage for this comprehensive synthesis, let us briefly recapitulate the pri-

mary focus and findings of each chapter:

1. Chapter 2: Interruption Management and Cognitive Resilience: This chapter

explores into the domain of interruption management, presenting empirical ev-

idence on the effectiveness of structured, practice-based training interventions

in enhancing individuals’ ability to manage interruptions. It emphasizes the

importance of cognitive resilience in dynamic workplace environments. The

chapter confirms the efficacy of these training methods and their potential for

broader application across various operational contexts, integrating cognitive

psychology, pedagogical theory, and practical application. It highlights how

structured training can improve individual performance and catalyze organiza-
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tional transformation, enhancing efficiency and safety. The insights and findings

are intended to inspire further research and practical implementation in the field,

particularly focusing on developing more resilient, efficient, and safer work envi-

ronments. The chapter sets the stage for innovative applications in interruption

management and cognitive resilience training, paving the way for targeted inter-

ventions for diverse populations, including individuals with Autism Spectrum

Disorder (ASD) in the next chapter.

2. Chapter 3: Social Robotics and Autism Spectrum Disorder: This chapter

presents a comprehensive exploration of how social robotics can enhance the

employability and daily living conditions of individuals with Autism Spectrum

Disorder (ASD). It details the project, highlighting the transformative impact of

combining advanced technological solutions with an understanding of specific

user needs. The successful implementation of ISTAR, evidenced by its posi-

tive reception and the notable improvements in participants’ abilities to handle

workplace interruptions, demonstrates the efficacy of this innovative approach.

The insights obtained from the ISTAR project offer practical strategies for de-

veloping inclusive and supportive technologies, emphasizing the broader societal

benefits.

3. Chapter 4: Chapter 4 explores the critical issue of task interruptions, a common

occurrence in today’s fast-paced work scenarios, which can significantly hinder

task performance by prolonging task resumption times and increasing error

rates. It presents robotic assistance as an innovative solution to buffer these ef-
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fects, particularly in tasks demanding high precision and focus. Through main-

taining continuity and reducing cognitive overload, robotic assistance emerges as

a valuable tool in enhancing task performance. The chapter emphasizes the im-

portance of designing targeted interventions, including training programs, and

technology tools integration, tailored to individual needs and task complexities.

Furthermore, it underscores the necessity of privacy-conscious technology de-

sign, advocating for the ethical handling of user data to build trust and ensure

a respectful technological environment.

The interplay between task complexity and learner proficiency is examined,

stressing the need for personalized learning approaches that calibrate techno-

logical aids to match learners’ capabilities. This balance is essential in creating

educational interventions that cater to individual skill levels, ensuring effective

learning outcomes.

4. Chapter 5: Privacy and Ethics in Robotics: This chapter explores the challenges

and opportunities of integrating privacy and ethics in the rapidly evolving field

of robotics. As robotics become increasingly integral to our daily lives, ad-

dressing privacy and ethical issues is crucial. The chapter discusses the privacy

challenges associated with robotic data collection and processing, emphasizing

the impact of public perception and legal frameworks on the adoption and usage

of robotics. It highlights the importance of differentially private algorithms in

balancing privacy protection with the functional needs of robots.

In terms of ethical considerations, the chapter examines the implications of
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data handling by robots, stressing the need for principles like transparency, ac-

countability, and respect for individual autonomy. It also analyzes the current

legal and regulatory environment related to privacy in robotics, focusing on its

implications for the use of differentially private algorithms and the design of

privacy-aware systems. One of the key discussions is the presentation of essen-

tial design principles for privacy-aware robotics. The chapter illustrates these

principles through real-world scenarios, such as a robotic system in retail inven-

tory management using encrypted communications and user-accessible privacy

settings to safeguard data.

Additionally, the chapter underscores the importance of community engagement

and public perception in the acceptance of privacy-aware robotic technologies.

It advocates for educational initiatives and collaborative design processes to

foster a more informed and accepting public view.

6.2 Integration of Findings

The collective examination of these chapters yields several key insights:

1. Enhanced Capability and Skill Development through Robotics: Robotics

is increasingly playing a pivotal role in enhancing human capabilities and skills.

This is evident from its application in cognitive resilience training, skill ac-

quisition, and assistance to individuals with specific needs, such as those with

Autism Spectrum Disorder. Robotics is transforming from a tool for indus-

trial applications to a versatile aid in personal, educational, and therapeutic
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contexts.

2. Complex Interplay of Robotics, Learning, and Task Performance:

The chapters underscore a complex dynamic between robotic assistance, human

learning processes, and task performance. This includes how robotic assistance

can facilitate skill transfer and retention, and the impact of task complexity

on learning outcomes. It highlights the evolving relationship between humans

and robots, where robots are not just tools but also partners in learning and

cognitive development.

3. Integration of Ethics and Privacy in Robotic Design: A crucial insight

is the increasing importance of integrating ethical considerations and privacy

concerns into robotic design. As robotics becomes more ingrained in everyday

life, addressing these ethical and privacy challenges is essential for responsible

and socially accepted technological advancement.

4. Adaptation to Technological Advancements: There is a continuous adap-

tation process between the rapid advancements in robotics and how humans

integrate these technologies into their lives. This adaptation is bidirectional;

technology shapes human behavior, while human needs and societal norms in-

fluence technological development.

These integrated findings highlight the multifaceted impact of robotics in human-

technology synergy. They emphasize a future where robotics is intricately linked

with human needs, societal challenges, skill development, and ethical considerations,
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necessitating a comprehensive approach to understanding and advancing the field of

robotics.

6.3 Future Research Directions

6.3.1 Emerging Areas

As the field of robotics and human-technology synergy continues to evolve, new av-

enues for research are emerging that promise to further deepen and broaden our

interaction with technology. Building on the insights from this dissertation, key areas

for future research include:

1. Enhancing Cognitive Resilience and Skill Development: Future research

can explore the development of robotic systems and technologies aimed at fur-

ther enhancing cognitive resilience and skill development. This includes inves-

tigating how robotic assistance can be optimized for different learning environ-

ments and individual needs, especially in educational and workplace settings.

2. Personalized Robotics in Therapeutic and Supportive Roles: Building

on the insights from working with individuals with Autism Spectrum Disorder,

there is an opportunity to expand research into the use of personalized robotics

for a wider range of therapeutic and support roles. This can encompass mental

health, emotional support, and addressing specific needs of diverse populations.

3. Balancing Ethical and Privacy Considerations in Robotics: As robotics

becomes more integrated into daily life, a key area of research will be to develop
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and refine ethical guidelines and privacy-preserving technologies in robotics.

This includes examining the implications of data handling, user consent, and

the overall impact of robotics on privacy and ethical norms.

4. Robot-Assisted Task Management: Investigating the role of robotics in

assisting with task management, particularly in understanding and mitigating

the impacts of task interruptions, presents a significant area for research. This

includes exploring the synergy between human cognitive processes and robotic

assistance to optimize task performance and learning outcomes.

5. Interdisciplinary Approaches to Technical Education: Future research

should continue to adopt interdisciplinary approaches, combining insights from

technology, psychology, education, law, and ethics, to address the multifaceted

nature of robotics and its societal impact.

6. Interactive Task Learning Robots: Socially Collaborative Robots (SCRs)

excel in mastering tasks through real-time interactions with humans by learn-

ing from and appropriately interrupting users to optimize task execution. These

robots intelligently ascertain the most opportune moments for targeted assis-

tance or feedback, tailored to their human partners’ immediate task require-

ments and context by leveraging insights from ongoing interactions and their

partners’ responses (Fitzgerald et al., 2022). This methodology not only fosters

deeper engagement but also ensures the alignment of task strategies with indi-

vidual preferences and progress levels. SCRs continuously refine their learning

and interrupting techniques based on this input, guaranteeing that their inter-
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ventions are both relevant and timely. By integrating technology with interac-

tive learning techniques, SCRs serve as dynamic partners in both learning from

and assisting humans, offering highly personalized task learning experiences.

They emerge as crucial instruments in adaptive, personalized, and interactive

task learning and execution. SCRs are further explored in Appendix C.

These research directions are informed by the findings of this dissertation and point

towards a future where robotics is not only technologically advanced but also ethically

sound, personalized for specific needs, and integrated into a wide range of human

activities, enhancing our interaction with technology and contributing to societal

development.

6.3.2 Refining Interaction for Interruptive Learner Robots

Allowing Socially Collaborative Robots (SCRs) to ask questions and initiate inter-

ruptions can greatly improve their learning efficiency, effectiveness, and personaliza-

tion. This enhances human-robot collaboration and learning outcomes through active

learning and interaction. Actively seeking clarifications helps SCRs focus on uncer-

tainties, aligning with active learning principles for more efficient knowledge acquisi-

tion. By understanding human intentions better, SCRs enhance their collaboration

abilities, akin to improving Theory of Mind (ToM). Real-time adjustments through

interruptions for clarifications adapt their learning to feedback, fostering adaptability.

Bidirectional communication enhances engagement and data quality, while personal-

ization addresses individual teaching preferences, improving learning effectiveness.
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Active questioning reduces errors from ambiguous human instructions, ensuring more

accurate behavior learning, which is critical in Human-in-the-Loop Machine Learning

(HIL-ML) systems (Cui et al., 2021). These measures aim to make SCRs supportive

and minimally disruptive, enhancing human-robot interaction by ensuring interrup-

tions are both productive and well-received, thus maintaining a productive flow of

interaction without overly disrupting human tasks.

SCRs as learner-interruptors are pivotal for enhancing learning, safety, and col-

laboration with humans. Their interruptions—ranging from clarifications, specific in-

structions, performance feedback, confirmations, expressing uncertainties, highlight-

ing errors or safety issues, to suggesting more efficient alternatives—demonstrate

a proactive approach to understand human intentions and optimize task execution

(Fitzgerald et al., 2019; Norton et al., 2022). These varied interactions, whether ques-

tioning decisions, seeking precise guidance, evaluating actions, or proposing knowledge-

based improvements, underscore the SCRs’ dedication to comprehensively engage in

and improve human-robot collaboration.

Goal: balancing interruptions against its disruptions involves:

1. Minimizing Disruption: SCRs are to implement non-intrusive interruptions,

carefully timed and possibly conveyed through non-verbal signals or during

natural task pauses. This approach minimizes interference with the human

partner’s workflow or concentration, underlining the robot’s dual role as a con-

siderate partner and an effective learner.
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2. Maximizing Information Gain: The SCR’s interruptions must be metic-

ulously designed to gather essential information, asking targeted questions to

obtain comprehensive insights from the human partner. This precision sup-

ports the SCR’s learning process, emphasizing its role as both an inquirer and

a collaborator keen on enhancing task understanding.

3. Learning Through Interruptive Interaction: Each interruption is inten-

tionally used by the SCR to refine its understanding of the task at hand and the

human partner’s strategies, directly benefiting the SCR’s learning curve. This

process exemplifies the SCR’s active role in learning from the human partner

while simultaneously striving to improve collaborative efficiency.

4. Valuable Interruption Design: The SCR crafts interruptions to be clearly

beneficial, articulating its needs for information and demonstrating how these

interruptions can positively impact task performance or safety. This strategy

aims to position the SCR as a valuable contributor to the task, actively learning

and assisting its human partner.

5. Adapting to Human Feedback: Enable SCRs to adjust interruption strate-

gies based on feedback, learning from their interactions with humans while also

increasing their own effectiveness and reducing their disruption to the human.

When an SCR Should Interrupt

In the dissertation chapters that examine the timing and strategy of interruptions,

key findings are as follows:

238



1. Pedagogical Interventions: As detailed in Section 2.5, interrupting during

periods of low cognitive load significantly minimizes disruption. This strategy

is most effective when guided by insights into the user’s behavior, ensuring both

timeliness and relevance of the interruptions.

2. Interruptive Robot (ISTAR): Section 3.4.3 highlights the importance of

customizing interruptions to align with the user’s current task and social con-

text. Customization enhances the relevance and consistency of the interrup-

tions, making them more beneficial.

3. Technical Robot Assistance: According to Section 4.4.9, strategic use of

interruptions for error prevention, clarification, and guidance is crucial during

pivotal learning moments. Such targeted interruptions significantly contribute

to the learning process, making them a valuable tool for enhancing learning

outcomes.

Key strategies for when SCRs should interrupt include:

1. Strategic Timing for Task Complexity: In managing task complexity, Sec-

tion 4.4.9 suggests that as tasks increase in difficulty, and users’ skill levels may

not suffice for optimal performance, error likelihood rises. It is recommended

that SCRs fine-tune the timing of their interruptions based on real-time assess-

ments of potential performance penalties or errors. This adjustment is crucial

when an interruption’s timing could exacerbate errors. SCRs can detect er-

rors by monitoring for discrepancies between the expected skill level and actual

performance, as well as deviations from established common ground knowledge.
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2. Strategic Timing for Different Task Types: Optimal interruption timing

by SCRs is influenced by the user’s cognitive state and level of task engage-

ment, with behavioral indicators pinpointing the most opportune moments for

intervention. Our findings in Section 2.4.6 reveal that interruptions, strategi-

cally placed based on the nature and phase of the task, can be advantageous

even amidst accruing errors. For strategic problem-solving tasks with Marko-

vian properties—where the optimal next substep is independent of previous

ones—interruptions facilitate cognitive regrouping, allowing users to reassess

and potentially enhance approaches to the ongoing task’s subsequent substeps.

In tasks that demand significant memory effort, SCRs act as external aids, pro-

viding cues for forthcoming substeps or reinforcing the memory of ones already

completed, thus supporting accurate task continuation. This proactive inter-

ruption strategy, detailed in Section 4.3.2, employs environmental cues to aid

memory and learning, preemptively addressing potential disruptions caused by

the SCR’s interruption and enabling a more effective resumption of the task.

3. Customization and Adaptation: Drawing from Sections 3.4.3 of our inter-

ruptive robot study and 4.4.7 of our technical robot assistant study, the timing

of interruptions by SCRs can affect the duration required for users to resume

their original tasks. Thus, it is crucial for interruptions to be closely aligned

with the user’s current activities, preferences, and context, especially when an

interruption is likely to cause a specific user to experience a delay in resuming

the task. SCRs should leverage personal data to continually refine and person-
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alize interruption strategies, ensuring they evolve over time to meet the user’s

needs more effectively. This approach helps minimize disruption and facilitates

a smoother transition back to the task, enhancing both user experience and

task performance.

These approaches aim to make SCR interruptions timely, relevant, and minimally

disruptive, thus improving human-robot collaboration.

How SCRs should interrupt

Given their dual role as both learners and interrupters, SCRs must employ strategies

that enhance learning while minimizing disruption. Three key approaches, supported

by our research, are critical for balancing these objectives:

1. Personalized Interruptions Based on User Adaptation: Based on in-

sights into the generalizability of training effects and the need for tailored in-

tervention strategies (Section 2.5), SCRs should customize their interruptions.

By analyzing the user’s current tasks, cognitive load, and interaction history,

SCRs can determine the optimal moments for interruption, ensuring minimal

disruption and maximum learning efficacy.

2. Predictive and Adaptive Interruption Timing: Highlighted by our re-

search on reducing interruption and resumption lags in Section 3.4.3, SCRs

must employ predictive modeling and real-time data to finely tune interruption

timing and content. This capability ensures interruptions are well-suited to the

urgency of the task and the human partner’s engagement level, showcasing the
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SCR’s adaptability in its learner and interrupter roles.

3. Leveraging Human Feedback for Strategy Refinement: Insights from

our investigation into robot-assisted technical education (Section 4.5) highlight

the value of SCRs adapting based on user feedback. This iterative feedback pro-

cess allows SCRs to refine their approaches, ensuring interruptions contribute

positively to the collaborative experience and learning outcomes.

These strategies enable SCRs to navigate their unique position effectively, improving

their function as collaborators and learners.

Minimizing the Impact of SCR Interruptions:

To further minimize disruptions and enhance the efficacy of SCRs’ interruptions, we

emphasize:

1. Pedagogical Training Integration: This strategy aligns with our study on

tailored intervention strategies, with emphasis on pedagogical interventions en-

hancing interruption management (See Section 2.6). The study demonstrated

that training could significantly improve how individuals manage and adapt to

interruptions, suggesting SCRs could be programmed to use insights from these

pedagogical interventions to better manage their interruption strategies.

2. Contextual Adaptation: The importance of adapting interruption strategies

to the user’s current context is supported by our interruptive robot study in

Secion 3.4.3, which showed different types of interruptions (environmental, so-

cial, task) and have varying impacts on user engagement and task resumption.
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This underscores the need for SCRs to adapt their interruptions based on the

context to minimize disruptiveness.

These focused measures aim to refine the interruption strategy of SCRs, ensuring they

support the user efficiently while maintaining minimal disruption to their workflow.

6.3.3 Potential Challenges and Opportunities

The landscape of future research in robotics and human-technology synergy is marked

by a range of challenges and opportunities:

1. Technological Challenges: These encompass ensuring the reliable and robust

performance of robotics in diverse environments, overcoming current technical

limitations, enhancing AI interpretability, and developing technologies that can

adapt to varied and complex human behaviors and learning processes.

2. Ethical and Legal Challenges: As robotics becomes more integrated into

various aspects of society, ethical and legal complexities will intensify, espe-

cially regarding privacy, data security, and the autonomy of robotic systems.

This includes addressing the ethical implications of robot-assisted learning and

cognitive training, as well as managing the balance between technological inno-

vation and privacy concerns.

3. Societal Opportunities: Robotics presents vast opportunities to address soci-

etal challenges across various sectors, including healthcare, education, environ-

mental conservation, and workplace optimization. Future research can explore
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these applications, focusing on how robotics can enhance human capabilities,

facilitate skill development, and improve cognitive resilience in real-world set-

tings.

4. Inclusivity and Accessibility: Ensuring that robotics technology is inclusive

and accessible to all segments of society is a critical area for exploration. This

entails developing robotic systems that can cater to a diverse range of needs,

including those of individuals with special needs, and ensuring equitable access

to these technological advancements.

5. Human-Centered Design and Adaptation: A key opportunity lies in fur-

thering human-centered design approaches in robotics, emphasizing the adapta-

tion of technology to human cognitive patterns, educational needs, and ethical

standards. This includes research on how robotic systems can be designed to

align more closely with human behavior, societal norms, and ethical considera-

tions.

The future of robotics and human-technology synergy, therefore, entails navigating

these challenges and capitalizing on these opportunities to advance the field in a

way that is technologically innovative, ethically responsible, socially beneficial, and

inclusive.

6.3.4 Long-Term Implications

The long-term implications of continued advancements in robotics and technology are

vast and multifaceted, shaping the future of human-technology synergy in significant

244



ways:

1. Transformation of Social Norms and Human Interaction: Robotics and

advanced technology have the potential to significantly alter social norms, in-

terpersonal interactions, and daily routines. This can lead to a society that is

deeply integrated with technology, where human-robot collaboration becomes

commonplace in personal, educational, and professional contexts.

2. Impact on Employment, Skills, and Education: The continuous advance-

ment of robotics will transform the job market, necessitating shifts in skill sets

and potentially leading to new forms of employment. This includes the need

for education systems to adapt, preparing individuals for a future where robotic

assistance and AI are integral to various job roles.

3. Enhancing Quality of Life and Cognitive Resilience: Robotics holds the

potential to significantly enhance quality of life, offering innovative solutions to

challenges in healthcare, education, accessibility, and cognitive resilience. The

integration of robotics in these areas can lead to improved therapeutic out-

comes, more effective learning processes, and enhanced daily living for diverse

populations.

4. Ethical and Societal Evolution: As society adapts to these advancements,

there will be a continuous evolution of ethical standards and societal norms.

This reflects the growing integration of robotics into human life and underscores

the importance of responsible and ethical technological development, with a

focus on privacy, accessibility, and inclusivity.
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5. Advancements in Cognitive and Educational Technologies: The devel-

opment of robotics and AI will also have significant implications for cognitive

training, skill acquisition, and educational methodologies. This includes explor-

ing how robotic systems can aid in cognitive resilience, personalized learning,

and the management of learning environments.

In conclusion, the future of robotics and human-technology synergy is a landscape

ripe with opportunities for groundbreaking research, innovations, and societal impact.

This dissertation has laid a foundation, but the journey ahead is vast and open for

exploration and discovery. As we venture into this future, the continuous and respon-

sible advancement of robotics will play a pivotal role in shaping human experiences,

societal structures, and ethical paradigms.

246



Bibliography

Adéníran, E. (2021). Challenges of cross-national legal regimes: An effort at re-
structuring the balance of power during data breach and loss of privacy in the
us. http://www.cs.yale.edu/homes/jf/adeniran2021.pdf. Accessed:21 Jan-
uary 2024.

Afram, A. and Janabi-Sharifi, F. (2014). Review of modeling methods for hvac sys-
tems. Applied thermal engineering, 67(1-2):507–519.

Alam, A. (2022). Social robots in education for long-term human-robot interaction:
socially supportive behaviour of robotic tutor for creating robo-tangible learn-
ing environment in a guided discovery learning interaction. ECS Transactions,
107(1):12389.

Altmann, E. M. and Hambrick, D. Z. (2017). Practice increases procedural errors
after task interruption. Journal of experimental psychology: general, 146(5):615.

Altmann, E. M. and Trafton, J. G. (2002). Memory for goals: An activation-based
model. Cognitive science, 26(1):39–83.

Altmann, E. M. and Trafton, J. G. (2004). Task interruption: Resumption lag and
the role of cues. In Proceedings of the Annual Meeting of the Cognitive Science
Society, volume 26, number 26.

Altmann, E. M. and Trafton, J. G. (2020). Memory for goals: An architectural
perspective. In Proceedings of the twenty first annual conference of the Cognitive
Science Society, pages 19–24. Psychology Press.

American Psychiatric Association (2022). Diagnostic and Statistical Manual of Mental
Disorders: DSM-5-TR. American Psychiatric Association Publishing, Washington,
DC, 5, text revision edition.

Anderson, J. R. and Douglass, S. (2001). Tower of hanoi: Evidence for the cost of goal
retrieval. Journal of experimental psychology: learning, memory, and cognition,
27(6):1331.

Anderson, J. R. and Lebiere, C. J. (2014). The atomic components of thought. Psy-
chology Press.

247

http://www.cs.yale.edu/homes/jf/adeniran2021.pdf


Arocena, I., Huegun-Burgos, A., and Rekalde-Rodriguez, I. (2022). Robotics and
education: A systematic review. TEM Journal, 11(1).

Bada, S. O. and Olusegun, S. (2015). Constructivism learning theory: A paradigm
for teaching and learning. Journal of Research & Method in Education, 5(6):66–70.

Baillie, L., Breazeal, C., Denman, P., Foster, M. E., Fischer, K., and Cauchard, J. R.
(2019). The challenges of working on social robots that collaborate with people.
In Extended abstracts of the 2019 CHI conference on human factors in computing
systems, pages 1–7.

Bainbridge, W. A., Hart, J., Kim, E. S., and Scassellati, B. (2008). The effect of
presence on human-robot interaction. In RO-MAN 2008-The 17th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication, pages 701–706.
IEEE.

Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., Peterson, E.,
Sherry, L., Trani, A., and Zou, B. (2010). Total delay impact study: a compre-
hensive assessment of the costs and impacts of flight delay in the united states.
National Center of Excellence for Aviation Operations Research (NEXTOR).

Becker, G. S. (1976). The economic approach to human behavior, volume 803. Uni-
versity of Chicago press.

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., and Tanaka, F. (2018).
Social robots for education: A review. Science robotics, 3(21):eaat5954.

Bergen, L., Evans, O., and Tenenbaum, J. (2010). Learning structured preferences.
In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 32.

Bernau, D., Robl, J., Grassal, P. W., Schneider, S., and Kerschbaum, F. (2021). Com-
paring local and central differential privacy using membership inference attacks. In
IFIP Annual Conference on Data and Applications Security and Privacy, pages
22–42. Springer.

Boumans, R., Van Meulen, F., Hindriks, K., Neerincx, M., and Rikkert, M. G. O.
(2019). Robot for health data acquisition among older adults: a pilot randomised
controlled cross-over trial. BMJ Qual Saf, pages bmjqs–2018.

Brooks, C. and Szafir, D. (2019). Building second-order mental models for human-
robot interaction. arXiv preprint arXiv:1909.06508.

Brumby, D. P., Cox, A. L., Back, J., and Gould, S. J. (2013). Recovering from an
interruption: Investigating speed- accuracy trade-offs in task resumption behavior.
Journal of Experimental Psychology: Applied, 19(2):95.

Bruya, B. and Tang, Y.-Y. (2018). Is attention really effort? revisiting daniel kahne-
man’s influential 1973 book attention and effort. Frontiers in psychology, 9:1133.

248



Bruyère, S. M., Chang, H.-Y., and Saleh, M. C. (2020). Preliminary report summariz-
ing the results of interviews and focus groups with employers, autistic individuals,
service providers, and higher education career counselors on perceptions of barri-
ers and facilitators for neurodiverse individuals in the job interview and customer
interface processes. K. Lisa Yang and Hock E. Tan Institute on Employment and
Disability.

Cades, D. M., Boehm-Davis, D. A., Trafton, J. G., and Monk, C. A. (2011). Mitigat-
ing disruptive effects of interruptions through training: What needs to be practiced?
Journal of Experimental Psychology: Applied, 17(2):97.

Cades, D. M., Davis, D. A. B., Trafton, J. G., and Monk, C. A. (2007). Does
the difficulty of an interruption affect our ability to resume? In Proceedings of the
human factors and ergonomics society annual meeting, volume 51, number 4, pages
234–238. SAGE Publications Sage CA: Los Angeles, CA.

Cades, D. M., Trafton, J. G., and Boehm-Davis, D. A. (2006). Mitigating disruptions:
can resuming an interrupted task be trained? In Proceedings of the human fac-
tors and ergonomics society annual meeting, volume 50, number 3, pages 368–371.
SAGE Publications Sage CA: Los Angeles, CA.

Carpinella, C. M., Wyman, A. B., Perez, M. A., and Stroessner, S. J. (2017). The
robotic social attributes scale (rosas) development and validation. In Proceedings of
the 2017 ACM/IEEE International Conference on human-robot interaction, pages
254–262.

Caterino, M., Rinaldi, M., Di Pasquale, V., Greco, A., Miranda, S., and Macchiaroli,
R. (2023). A human error analysis in human–robot interaction contexts: Evidence
from an empirical study. Machines, 11(7):670.

Chisholm, C. D., Collison, E. K., Nelson, D. R., and Cordell, W. H. (2000). Emergency
department workplace interruptions are emergency physicians “interrupt-driven”
and “multitasking”? Academic Emergency Medicine, 7(11):1239–1243.

Colombi, C., Liebal, K., Tomasello, M., Young, G., Warneken, F., and Rogers, S. J.
(2009). Examining correlates of cooperation in autism: Imitation, joint attention,
and understanding intentions. Autism, 13(2):143–163.

Cui, Y., Koppol, P., Admoni, H., Niekum, S., Simmons, R., Steinfeld, A., and Fitzger-
ald, T. (2021). Understanding the relationship between interactions and outcomes
in human-in-the-loop machine learning. In International Joint Conference on Ar-
tificial Intelligence.

Dabbish, L. and Kraut, R. E. (2004). Controlling interruptions: awareness displays
and social motivation for coordination. In Proceedings of the 2004 ACM conference
on Computer supported cooperative work, pages 182–191.

249



Deng, E., Mutlu, B., Mataric, M. J., et al. (2019). Embodiment in socially interactive
robots. Foundations and Trends® in Robotics, 7(4):251–356.

Diehl, J. J., Schmitt, L. M., Villano, M., and Crowell, C. R. (2012). The clinical use of
robots for individuals with autism spectrum disorders: A critical review. Research
in autism spectrum disorders, 6(1):249–262.

Donaldson, M. S., Corrigan, J. M., Kohn, L. T., et al. (2000). To err is human:
building a safer health system. Institute of Medicine, page 163.

Drechsler, J. (2023). Differential privacy for government agencies—are we there yet?
Journal of the American Statistical Association, 118(541):761–773.

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9:211–407.

Eick, S. and Antón, A. I. (2020). Enhancing privacy in robotics via judicious sensor
selection. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 7156–7165. IEEE.

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., and
Thakurta, A. (2019). Amplification by shuffling: From local to central differen-
tial privacy via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2468–2479. SIAM.

Evans, O. and Goodman, N. D. (2015). Learning the preferences of bounded agents.
In NIPS Workshop on Bounded Optimality, volume 6, pages 2–1.

Evans, O., Stuhlmüller, A., and Goodman, N. (2016). Learning the preferences of
ignorant, inconsistent agents. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30.

Falkland, E. (2023). Cue utilisation and interruptions in high risk, high consequence
environments. PhD thesis, Macquarie University.

Falkland, E. C., Wiggins, M. W., and Westbrook, J. I. (2020). Cue utilization differen-
tiates performance in the management of interruptions. Human Factors, 62(5):751–
769.

Fiore, S. M., Wiltshire, T. J., Lobato, E. J., Jentsch, F. G., Huang, W. H., and
Axelrod, B. (2013). Toward understanding social cues and signals in human–robot
interaction: effects of robot gaze and proxemic behavior. Frontiers in psychology,
4:859.

Fischer, K. (2019). Why collaborative robots must be social (and even emotional)
actors. Techne: Research in Philosophy & Technology, 23(3).

Fitzgerald, T., Goel, A. K., and Thomaz, A. (2017). Human-robot co-creativity: Task
transfer on a spectrum of similarity. In ICCC, pages 104–111.

250



Fitzgerald, T., Koppol, P., Callaghan, P., Wong, R. Q. J. H., Simmons, R., Kroemer,
O., and Admoni, H. (2022). Inquire: Interactive querying for user-aware informative
reasoning. In 6th Annual Conference on Robot Learning.

Fitzgerald, T., Short, E., Goel, A., and Thomaz, A. (2019). Human-guided trajectory
adaptation for tool transfer. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, pages 1350–1358.

Ginns, P. and Leppink, J. (2019). Special issue on cognitive load theory. Educational
Psychology Review, 31:255–259.

Gontar, P., Schneider, S. A. E., Schmidt-Moll, C., Bollin, C., and Bengler, K. (2017).
Hate to interrupt you, but. . . analyzing turn-arounds from a cockpit perspective.
Cognition, Technology & Work, 19(4):837–853.

Görür, O. C., Rosman, B., Sivrikaya, F., and Albayrak, S. (2018). Social cobots: An-
ticipatory decision-making for collaborative robots incorporating unexpected hu-
man behaviors. In Proceedings of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction, pages 398–406.

Goulet-Pelletier, J.-C. and Cousineau, D. (2018). A review of effect sizes and their
confidence intervals, part i: The cohen’sd family. The Quantitative Methods for
Psychology, 14(4):242–265.

Hale, M. T., Setter, T., and Fregene, K. (2019). Trust-driven privacy in human-robot
interactions. In 2019 American Control Conference (ACC), pages 5234–5239. IEEE.

Hanneke, B., Baum, L., Schlereth, C., and Hinz, O. (2023). Consumer preferences
for privacy management systems.

Harmuth, E., Silletta, E., Bailey, A., Adams, T., Beck, C., and Barbic, S. P. (2018).
Barriers and facilitators to employment for adults with autism: A scoping review.
Annals of International Occupational Therapy, 1(1):31–40.

Hayes, B. and Scassellati, B. (2013). Challenges in shared-environment human-robot
collaboration. learning, 8(9).

Hayes, B. and Scassellati, B. (2014). Online development of assistive robot behaviors
for collaborative manipulation and human-robot teamwork. In Workshops at the
Twenty-Eighth AAAI Conference on Artificial Intelligence.

Hendricks, D. (2010). Employment and adults with autism spectrum disorders: Chal-
lenges and strategies for success. Journal of vocational rehabilitation, 32(2):125.

Hodgetts, H. M. and Jones, D. M. (2006). Interruption of the tower of london task:
support for a goal-activation approach. Journal of Experimental Psychology: Gen-
eral, 135(1):103.

251



Hoffman, G. and Breazeal, C. (2004). Collaboration in human-robot teams. In AIAA
1st intelligent systems technical conference, page 6434.

Irfan, B., Ramachandran, A., Spaulding, S., Kalkan, S., Parisi, G. I., and Gunes, H.
(2021). Lifelong learning and personalization in long-term human-robot interac-
tion (leap-hri). In Companion of the 2021 ACM/IEEE international conference on
human-robot interaction, pages 724–727.

James, J. T. (2013). A new, evidence-based estimate of patient harms associated with
hospital care. Journal of patient safety, 9(3):122–128.

Jha, A. K., Larizgoitia, I., Audera-Lopez, C., Prasopa-Plaizier, N., Waters, H., and
Bates, D. W. (2013). The global burden of unsafe medical care: analytic modelling
of observational studies. BMJ quality & safety, 22(10):809–815.

Johnson, K. R., Ennis-Cole, D., and Bonhamgregory, M. (2020). Workplace success
strategies for employees with autism spectrum disorder: A new frontier for human
resource development. Human Resource Development Review, 19(2):122–151.

Johnson, M., Sanchez, P., Langdon, R., Manias, E., Levett-Jones, T., Weidemann,
G., Aguilar, V., and Everett, B. (2017). The impact of interruptions on medi-
cation errors in hospitals: an observational study of nurses. Journal of nursing
management, 25(7):498–507.

Jones, W. E. and Moss, J. (2019). Assessing the transfer of interruption resumption
skill to novel tasks. Journal of Experimental Psychology: Applied, 25(2):230.

Kaminski, M. E., Rueben, M., Smart, W. D., and Grimm, C. M. (2016). Averting
robot eyes. Md. L. Rev., 76:983.

Kenyon, L. (2015). Managing autism in the workplace. Occupational Health & Well-
being, 67(6):18.

Khattar, P. (2023). What you don’t know will hurt you: Fighting the privacy paradox
by designing for privacy and enforcing protective technology. Wash. JL Tech. &
Arts, 18:1.

Kok, B. C. and Soh, H. (2020). Trust in robots: Challenges and opportunities. Current
Robotics Reports, 1:297–309.

Kolain, M., Grafenauer, C., and Ebers, M. (2021). Anonymity assessment-a universal
tool for measuring anonymity of data sets under the gdpr with a special focus on
smart robotics. Rutgers Computer & Tech. LJ, 48:174.
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Appendix A

Detailed Description of the Mock
HVAC Workspace

The mock Heating, Ventilation, and Air Conditioning (HVAC) board serves as a
pivotal educational tool, designed to closely simulate the functioning of real-world
HVAC systems for training and research purposes. It provides an immersive, hands-on
learning experience through its comprehensive assembly of 13 essential components,
each contributing to the system’s overall functionality and the learners’ understanding
of HVAC operations. Below is a detailed rundown of these components and their
specifications:

1. Power Transformer: Supplies two power circuits with 24V to the Thermostat,
Relays, and Sequencer, actuating the 120V circuit for components based on
the Thermostat settings. Specifications: Primary voltage of 120, 208, 240V;
Secondary voltage of 24V; Power Rating of 40VA.

2. Thermostat with Display: Controls room temperature by managing the heating
and cooling systems according to user inputs. It features modes for heating,
cooling, and fan-only. Wire colors for troubleshooting include RH/RC (Red) for
heating controls, G (Green) for the fan relay, Y (Yellow) for the air conditioning
compressor, C (Common) for 24-volt power return path, and W (White) for the
heater.

3. Blue Bulb (Compressor): Simulates the refrigerant pump, absorbing and re-
leasing heat. Represented by a blue light bulb, indicating compressor activity.
Specifications: 110V, 6W, Standard E26 Base Lightbulb, with resistance over
180,000 Ohms.

4. Condenser Fan: Expels indoor heat outdoors, shown as a fan pushing air out.
Specifications: 120x25mm, works with 110V and 220V AC power, with resis-
tance over 14,000,000 Ohms.
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5. Red Bulb (Heater): Mimics an electric heater, converting electric power to
heat, indicated by a red bulb. Specifications: 110V, 6W, Standard E26 Base
Lightbulb, with resistance over 7,500,000 Ohms.

6. Blower Fan: Circulates air for cooling and ventilation, located on the board’s
left side. Specifications: 120x25mm, works with 110V and 220V AC power,
resistance over 14,000,000 Ohms.

7. Dual Plug Outlet: A duplex 3-prong receptacle supporting 15A, providing power
to the compressor and condenser.

8. Contactor Relay: Switches large loads, passing power to motors (fans), the
electric heater (red bulb), and the compressor (blue bulb). Specifications: 1
POLE 30 AMPS 24 COIL VOLTAGE.

9. Single Pole Single Throw (SPST) Fan Relay: Controls the blower fan, turning
it on or off. Specifications: 24 VAC Coil Voltage, SPST NO NC Contacts.

10. Electric Heat Sequencer: Sequences heating element and blower fan activation to
prevent simultaneous operation. Specifications: 24V input control, 2 switches.

11. Double Pole Double Throw (DPDT) Switching Relay: Controls the blower fan
and heater, switching between two circuits. Specifications: DPDT 24 Volt Coil
Voltage.

12. Circuit Breaker: Protects control circuits from overcurrent, with a 3 amp rating.

13. Terminal Block: Insulated block connecting electrical wires, organizing connec-
tions securely. The Thermostat’s connections route through this block.

These components collectively replicate the intricacies of HVAC systems, enabling
learners to gain practical insights into system design, operation, and troubleshooting.
The mock board’s design focuses on facilitating an interactive learning experience,
bridging the gap between theoretical knowledge and real-world application, essential
for proficient HVAC system maintenance and repair, as shown in Figure A.1.
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Figure A.1: Close-up of Mock HVAC Board inspired by Tech (2023).
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Appendix B

Mock Board Power Circuits

Understanding the 24-volt signal and 120-volt power circuits in HVAC systems is cru-
cial due to their distinct functions and safety implications. Both circuits derive from
a single transformer, highlighting the integrated nature of HVAC electrical systems
and underscoring the importance of precise engineering and safety measures.

B.1 Common Transformer Specifications

A 40VA Control Transformer with multi-tap capabilities and UL Certification powers
both circuits. It accepts primary voltages of 120, 208, 240V and steps down to 24V
for the signal circuit, designed for HVAC furnace applications. This setup optimizes
system integration and efficiency by supporting both control signals and power needs
from a unified source.

The GFCI (Ground Fault Circuit Interrupter) protection on the main power sup-
ply line enhances safety by monitoring electrical current flow. If an imbalance is
detected, indicating a potential ground fault, the GFCI promptly shuts off power to
prevent electric shock. This precaution is crucial in moisture-prone environments or
areas accessible to individuals, ensuring overall safety.

Power is safely supplied to the transformer after GFCI verification, where it is
adjusted to meet the HVAC system’s voltage requirements for control and operation.
This dual-circuit supply from a single transformer ensures efficient and safe HVAC
operation. The setup not only mitigates electric shock risks but also provides precise
control over component operation, ensuring they receive appropriate power for both
signaling and mechanical action. Understanding this infrastructure is essential for
safe HVAC system installation, troubleshooting, and maintenance, emphasizing the
critical role of GFCI protection and the transformer’s capability to manage diverse
power demands.
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B.1.1 Transformer Output for Two Circuits

1. 24-Volt Signal Circuit: Supplies the control circuit with 24V for communi-
cation between the thermostat and HVAC components, enabling the activation
of relays and switches.

2. 120-Volt Power Circuit: The main power supply provides 120V to this cir-
cuit, essential for operating the system’s high-energy components like blower
fans and compressors. Commercial systems may require higher voltages, with
specific arrangements to ensure proper power supply.

B.2 120-Volt Power Circuit

This circuit is designed for high-energy tasks within HVAC systems, such as operating
the blower fan (left fan) and air conditioning compressors (blue bulb), as well as the
condenser fan (right-side fan). It plays a critical role in the mechanical functions
necessary for heating, cooling, and air circulation.

1. Purpose: Supplies the necessary power for the operation of high-energy HVAC
components.

2. Safety: Due to its higher voltage, there is an increased risk of electric shock.
The incorporation of GFCI protection on the main supply line is a crucial safety
measure, automatically disconnecting power in case of ground faults to mini-
mize electric shock risks. This setup requires careful installation and ongoing
maintenance, protected by circuit breakers or fuses to avert electrical overloads.

3. Function: Directly energizes the system’s main components, facilitating essen-
tial HVAC processes.

B.3 24-Volt Signal Circuit

This circuit, often referred to as the control circuit, is pivotal for the communication
between the thermostat and various HVAC components, managing the operation of
the system’s high-power elements through relays and switches.

1. Purpose: Facilitates communication and control within the HVAC system,
linking the thermostat to components such as furnaces, air conditioners, and
heat pumps.

2. Safety: Its lower voltage significantly reduces the risk of electric shock, making
it safer for technician interaction and installation in easily accessible areas.

3. Function: Controls the activation of heating or cooling elements without di-
rectly powering them, indicating when these elements should be turned on or
off.
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Appendix C

Notional Socially Collaborative
Robots (SCRs)

Human collaboration is enriched by cooperative interactions and communications,

requiring the ability to reconcile different perspectives for effective goal coordina-

tion. This involves perspective-shifting and discerning the truth of beliefs, essential

for meaningful interaction (Fischer, 2019; Görür et al., 2018). Robots working with

humans need these skills for true collaboration. In Human-Robot Interaction (HRI),

Collaborative Robots (CoBots) assist through physical means, while Socially Assis-

tive Robots (SAR) offer support socially or emotionally (Hayes and Scassellati, 2013;

Matarić and Scassellati, 2016). Both types prioritize cooperative dynamics, necessi-

tating skills in managing shared intentions and adapting to human communication

styles (O’Madagain and Tomasello, 2022; Tomasello, 2018). Integrating SAR’s social

skills with CoBots’ physical collaboration can significantly improve teamwork (Görür

et al., 2018; Baillie et al., 2019). The challenge in HRI is creating robots that navi-

gate the complex social dynamics of human environments, blending SAR and CoBots’

strengths. These robots, termed Socially Collaborative Robots (SCR), aim to excel
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in both social and physical aspects of team interactions.

C.1 Social Collaboration and SCRs: Theory and Chal-

lenges

Central to social collaboration is Theory of Mind (ToM), enabling the attribution of

mental states like beliefs and intentions to oneself and others, crucial for understand-

ing diverse perspectives (Fischer, 2019; Schmerling et al., 2018). For SCRs, this means

inferring human partners’ mental states to adjust actions for genuine collaboration

(Hoffman and Breazeal, 2004; Tabrez et al., 2020).

Developing SCRs requires them to master social competence, recognizing and an-

ticipating human actions based on mental states. This involves interpreting intentions

and emotions and responding with socially competent actions, essential for effective

teamwork (Hoffman and Breazeal, 2004; Colombi et al., 2009). SCRs need to deduce

beliefs from actions and contexts, synchronizing perspectives with human partners for

tailored assistance and seamless cooperation (Tomasello, 2018; Colombi et al., 2009).

However, basic ToM may not suffice. SCRs also need advanced cognitive mod-

eling—specifically, second-order mental modeling—to anticipate both human mental

models and those incorporating the SCR itself (Mathieu et al., 2000). This deeper

understanding enables SCRs to navigate and enhance human-robot collaboration

(Tabrez et al., 2020; Brooks and Szafir, 2019).

Challenges arise from computational methods assuming optimal human behavior,
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which often misaligns with real-world actions influenced by unpredictability, per-

sonal preferences, and cognitive biases (Ziebart et al., 2008; Schmerling et al., 2018).

Current models face issues with distributional shift, where training data does not

match real-world decision-making, decreasing model robustness (Majumdar et al.,

2017; Becker, 1976).

The difficulty in accurately modeling human intentionality adds to these chal-

lenges. Assumptions of goal optimization fail to account for the opaque and complex

motivations behind human behavior, presenting a “black box” problem. This complex-

ity underscores the formidable task of predicting human behavior with its inherent

variability and specificity (Reddy et al., 2018; Schmerling et al., 2018). However,

human behavior is not always computationally optimal or near-optimal. Some postu-

late that the reason for the suboptimality of behavior is due to random noise (Ziebart

et al., 2008), preferences, ignorances, or inconsistencies (Evans and Goodman, 2015;

Evans et al., 2016; Bergen et al., 2010), or risk appetite (Majumdar et al., 2017).

Others propose that such behaviors result from epistemological discrepancies between

subjective beliefs and objective reality, implying that humans tailor their actions to

achieve their ultimate goals, within the bounds of their understanding and beliefs

(Reddy et al., 2018; Becker, 1976). These perspectives underscore the intricate web

of factors influencing human decision-making, posing significant challenges for the

predictive models used in designing SCRs.

Given the intricate nature of human behavior, marked by its unpredictability and

the profound depth of underlying motivations, the task of designing SCRs that can

adapt to and anticipate human actions ramifies in complexity. These challenges high-
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light the inherent limitations of relying exclusively on computational models that aim

for an idealized representation of human interactions. Transitioning from the com-

putational difficulties of accurately modeling human intentionality towards exploring

viable solutions, the concept of embodiment emerges not as a mere feature but as a

cornerstone for enhancing human-robot collaboration.

Embodiment in SCRs grounds the interaction in the physical world and enables a

more intuitive and meaningful exchange between humans and robots. This tangible

morphological presence, characterized by the capacity to express and interpret non-

verbal cues, plays an instrumental role in bridging the perceptual and communicative

gap between humans and artificial agents. It underscores the necessity of moving

beyond traditional computational models to incorporate the nuanced dynamics of

real-world interactions, where embodiment plays a pivotal role.

Embodiment in SCRs serves as a pivotal factor enabling humans to afford robots

with “minds”, fundamentally altering the dynamics of human-robot interaction. This

physical presence, or embodiment, enriches the interaction landscape beyond mere

verbal communication, incorporating non-verbal cues like gestures, facial expressions,

and spatial behaviors that are intrinsic to human social exchanges. Such embodied

cues are instrumental in bridging the perceptual gap between humans and robots,

allowing humans to attribute mental states, intentions, and emotions to these artifi-

cial agents. This attribution is crucial for developing a ToM within SCRs, which is

essential for recognizing and understanding the complex, multifaceted nature of hu-

man mental states. By perceiving robots as entities with their “minds”, humans can

engage in more natural, meaningful, and effective interactions, fostering a sense of
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social connection and collaboration that is pivotal for the success of SCRs in various

domains, including education, healthcare, and personal assistance (Deng et al., 2019).

Moreover, research indicates that the physical embodiment of SCRs significantly

enhances their ability to function as social partners and tutors, leading to improved

learning outcomes and engagement levels compared to their virtual counterparts or

when no robot is present at all. This suggests that embodiment plays a crucial role

not only in how humans perceive and interact with robots but also in the effectiveness

of these interactions in achieving specific objectives. Embodied SCRs, by virtue of

their tangible morphology, can more effectively mimic human social behaviors, making

them more relatable and easier for humans to understand and predict. This enhanced

relatability and predictability, facilitated by embodiment, are essential for building

trust, rapport, and cooperation between humans and robots, ultimately enabling

more successful and harmonious human-robot collaborations (Deng et al., 2019; Long

et al., 2023).

C.2 Advancing Human-Robot Collaboration through

Adaptive Modeling

Our research proposes moving beyond traditional models that predict human be-

havior through utility optimization. We advocate for a framework that integrates

assumptions about human-robot interaction into the development of robots’ mental

models (Wiltshire et al., 2013). This approach acknowledges the complexity of hu-
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man decision-making and focuses on the dynamics of human-robot relationships to

improve the predictive accuracy and adaptability of robots.

By incorporating predefined objectives, shared knowledge, and roles within human-

robot teams, we anticipate the streamlining of interaction strategies. This could en-

able SCRs to make targeted inquiries, using human feedback to refine their models of

human beliefs and intentions. This feedback-driven approach could enhances SCRs’

adaptability and accuracy in interpreting human actions.

We the aim to create scenarios reflecting diverse human behavior, SCRs could bet-

ter understand complex decision-making processes Tabrez et al. (2020). Human re-

sponses provide dynamic feedback, enabling SCRs to infer intentions more accurately

and adaptively. This iterative learning from direct feedback could foster nuanced and

effective collaboration.

This would amount to a methodology that embraces the unpredictable nature of

human behavior by including inductive biases specific to human-robot interaction.

The result is would flexible, robust framework that adjusts based on human interac-

tion feedback, developing a more responsive model that accurately captures human

nuances.

We anticipate that the development of a scalable, resilient model for SCRs, capable

of navigating human-robot interaction complexities and adapting to new challenges

would be of great benefit to HRI. By incorporating feedback into an SCR’s devel-

opment, we expect a significant refinement of robots for HRI research, enhancing

human-robot collaboration towards more adaptive, intuitive, and beneficial interac-

tions.
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C.3 Enhancing SCR Capabilities: A Methodology

To transition SCRs from theory to practice, ensuring seamless integration into hu-

man settings, a multidimensional methodology focusing on systematizing inductive

biases, crafting realistic scenarios, and operationalizing shared mental models, aimed

at boosting the robots’ predictive accuracy and social adaptability would be required

(Mathieu et al., 2000).

C.3.1 Systematizing Inductive Biases

This begins by embedding essential assumptions about human-robot interaction into

SCRs’ cognitive frameworks. The aim would be to retain robustness against distribu-

tional shifts by structurally embedding a subset of the necessary assumptions about

the nature of a human-robot team’s interactivity into the way a robot comes to form

mental models of its human partner. This approach is akin to systematizing the

inductive biases to circumscribe the hypothesis space of collaborative interactions.

The systematization of inductive biases might be achievable by constructing realis-

tic scenarios aligning the space of the robot’s predictions of probable human beliefs,

intentions, and actions with its human partners’ purposeful decisions (Evans and

Goodman, 2015). This involves codifying biases that influence human social behavior

into the robots’ operational logic, providing them with a foundational understand-

ing of social norms and expectations (Evans et al., 2016). This strategic integration

facilitates a proactive approach to social cognition in robotics.
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C.3.2 Constructing Realistic Scenarios

To test and refine these biases, SCRs could be immersed in diverse, realistic scenarios

that replicate the complexity of human environments, from workplace collaborations

to home interactions. This variety tests the robots’ ability to interpret intentions,

anticipate actions, and adapt in real-time, aligning their operations more closely with

human behavior patterns and improving collaboration (Bergen et al., 2010).

C.3.3 Operationalizing Shared Mental Models

A key aspect of this approach is enabling SCRs to accurately model human partners’

mental states and understand that humans hold reciprocal models of the robot. This

mutual awareness fosters predictability and trust, vital for effective teamwork. By

adjusting behaviors based on human perspectives, SCRs achieve a new level of social

competence.

This methodology aims to advance SCRs from theoretical constructs to practical

collaborators, embedding social understanding, testing it in real-world scenarios, and

fostering mutual awareness between robots and humans. By integrating these ap-

proaches, we lay the foundation for next-generation robots capable of genuine human

collaboration, marking a significant leap in human-robot interaction.
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