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Abstract

While robots have been used extensively for the purpose
of teaching symbolic knowledge, using robots to teach
or refine motor skills of humans, such as swinging a
bat, or shooting a basketball, is underserved. Robots are
uniquely well situated to observe physical movements,
identify problems, prioritize which problems to address
first, and to patiently communicate personalized advice
to the student. We propose an architecture to coach
physical skills, and focus on the second and third of
these challenges - identifying problems with the move-
ments, and prioritizing which to address first - as ap-
plied to the domain of shooting a basketball. We present
a supervised learning approach to prioritize which prob-
lems to work on, and propose the design of several user
studies that will determine the effectiveness of the algo-
rithm.

Introduction
Socially assistive robots, robots whose primary purpose is
to aid humans through social interaction (Feil-Seifer and
Mataric 2005), are becoming increasingly capable in un-
derstanding humans, and helping them improve at emo-
tional (Leite et al. 2012), skill-based, and symbolic tasks
(Leyzberg, Spaulding, and Scassellati 2014).

It is advantageous to teach humans symbolic tasks using
robots rather than virtual agents due to the increased social
presence, or embodiment, that a physical robot engenders.
Bainbridge et al. (2008) showed that this physical presence
affords increased compliance on behalf of the human. More-
over, Leyzberg et al. (2010) have shown that the embodiment
effect also leads to more rapid learning gains compared to a
virtual agent.

As suited as robots are for tutoring informational tasks,
they may be better suited for tutoring physical tasks that,
like themselves, are situated in the real world. The advan-
tages conferred upon robots over virtual agents for teaching
physical tasks are: 1) external sensing 2) mobility to follow
the human, and acquire different vantage points 3) the ability
to perform live demonstrations 4) the ability to act upon the
world to aid the human. Grer, Salah, and Akn (2013) have
taken advantage of these characteristics by using Nao robots
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Figure 1: Robot architecture to observe and coach physical
skills in humans.

to help elderly patients exercise to remain fit by demon-
strating gestures, and Ros, Baroni, and Demiris have shown
that children were attentive to the robot coach that demon-
strated their physical dancing task. Robots have been used
extensively in stroke rehabilitation to provide social support
(Wade et al. 2011), as well as sensorimotor support (Volpe
et al. 2000). In terms of observing the human’s movement,
detecting problems, and giving the human specific advice on
how to improve the movement, past research, such as Bob-
bert et al., is mostly focused on non-robot platforms.

We propose a high-level autonomous, personalized robot
architecture to observe and coach physical activities towards
a reference motion (“ground truth”), which is accepted to
be correct. The architecture uses a supervisory binary sig-
nal (shown in Figure 1) which allows our architecture to
determine which problems are most detrimental to the stu-
dent’s performance, and to coach the student to improve
those problems first. This prioritization of fixing the most
problematic issues, first, affords rapid improvement in short
time-frames. We propose a study to evaluate the magnitude
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Figure 2: Physical setup for the basketball shooting application
domain.

of the improvement generated by the architecture.

Application Domain
The application domain discussed in this paper is the act
of shooting basketballs into a hoop from a set distance, de-
picted in Figure 2. Here, the input signal is the set of time
series of all of the joints, collected by a Kinect 3D sensor.
Another input, the ground truth, is a similar set of time se-
ries, collected by observing a professional. For each itera-
tion, the supervisory signal is a binary variable representing
whether the ball fell into the hoop or not, perceived using a
commercially available ShotTracker sensor on the net. The
architecture is best suited for situations in which the super-
visory signal is perceivable by a robot, or is automatically
present, rather than requiring manual coding by a human,
but it can be used in both situations.

Proposed Architecture
The architecture receives a “Student Joint Angle Time Se-
ries” for each of the joints. This skeletal data time series is
collected using a pre-built and commercially available sen-
sor, such as a Kinect. The architecture also receives an “Ex-
pert Joint Angle Time Series” for each joint of a ground truth
expert demonstration.

In Module 1 (PROB), we identify student movement
problems, relative to the ground truth. This module detects
differences between the user’s movement, and the motion
that we accept to be correct. This module first preprocesses
the incoming signals by aligning their tempo with the ground
truth, then bucketing the continuous signal into discrete time
slices, and subtracting off the corresponding ground truth
time slices. At the output of module 1, we are left with a
measure of how different each joint angle is from the ground
truth, for each time slice.

Module 2, the Improvement Prioritization Module (PRI-
ORITIZE), takes in three data streams as input: i) the prob-
lems with the student’s observed motion (the output of
PROB), ii) the past history of all joint angle time series data
of all past sessions across students, and iii) the correspond-
ing supervisory signals for all past sessions of joint angle

time series. The module’s role is then to use the past his-
tory of all joint angle time series data, and corresponding
supervisory signals to determine which time slices on which
joints are most predictive of a successful action. In other
words, it determines which problems cause bad results, and
which have no effect on the results. The module then out-
puts the problem with the student’s observed motion that is
most likely to improve results, if changed. By focusing on
the most significant problem, the student will be able to im-
prove his results most rapidly.

Module 3 is the Human-Robot Interaction component of
the architecture. Given the most significant problem that
needs to be solved, as input, the advice module determines
how best to communicate advice on how to fix this prob-
lem. Here, the robot will decide whether to give a physical
demonstration, verbal advice, and also, which advice to give.
This module will itself adapt to give more personalized ad-
vice over time. As the robot learns whether a particular stu-
dent prefers physical versus verbal advice, the student’s ad-
vice frequency, etc. this module will personalize to the needs
of the student.

Computing Student Gesture Problems
The PROB module finds “problems” in the observed mo-
tion relative to the ground truth. It receives as input a set of
time-series data, each for a different joint. Each time series
is a collection of (timestamp, joint-angle) tuples. It finds the
“problems” by first i) aligning the tempo of the signal with
the ground truth signal, so that the signals can be subtracted
from one another. If this step weren’t performed, then if a
motion were identical to the ground truth, but with an addi-
tional 2 second pause at the start, the entire signal would be
offset by 2 seconds from the ground truth. Subtracting the
ground truth would result in finding problems at every time-
step, even though there are no problems, since the signals
are identical. ii) PROB then buckets each time-series into
more discrete time-intervals. Whereas the raw time-series
for a joint might have thousands of data-points, we average
all of the data points from t=0.0s to t=0.1s, and assign that
value those to bucket 1, etc. iii) Finally, PROB subtracts the
ground truth bucket 0 from input bucket 0, and ground truth
bucket 1 from input bucket 1, etc. The output of PROB is the
differences between the input signal and the ground truth, for
each bucket in each joint. These differences then become the
features for the following module, PRIORITIZE. The rea-
son we perform bucketing was to decrease the total number
of features, and to make the subtraction step easier.

Prioritizing Improvements
The prioritization module works by selecting the most detri-
mental problem towards performance from the student’s
personalized problems, inputted from PROB. PRIORITIZE
therefore selects the problem that, if improved, would con-
fer the highest amount of benefit to the student. In order to
determine which problems are significant and which are not,
the PRIORITIZE module performs a regression on all of the
past data, from all sessions and all students.

Table 1 contains example data that we use to demonstrate
an example. For each graph, the data to the left of the ver-
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Shot
#

Student 1
[input,result]

Student 2
[input,result]

Student 3
[input,result]

1 , 0 , 1 , 1

2 , 0 , 1 , 1

3 , 1 , 1 , 1

Avg , 0.33 , 1 , 1

Table 1: Example historical data for regression by prioriti-
zation module. All graphs are time series for the same joint
(y-axis is angle, x-axis is time). Bucket 1 is to the left of the
dotted line, and bucket 2 is to the right.

tical dotted line is the time-series content that is averaged
into bucket 1. The data to the right of the dotted line corre-
sponds to bucket 2. In this particular case, buckets contain-
ing a spike have an average of 1, and buckets not containing
spikes average to 0. The features for the joint in shot #1 by
student 1 are (1, 1), since the average value of both buckets
is 1. Similarly, shot #1 by student 2 gives (0, 0), and shot
#3 by student 3 gives (0, 1). Using this historical input data,
and the historical supervisory signals (also included in Table
1, as result), we can perform a regression to determine the
weights of each feature, and thus how much each problem
affects the end result.

To illustrate this, if one performs a simple linear regres-
sion on the Table 1 data, one gets the weights θ0 = 0, θ1 =
−0.67, and θ2 = 0, indicating that feature 1 is important,
whereas feature 2 is not important.

Upon finding the historical weights, PRIORITIZE looks
at each problem feature from the input signal sent in from
PROB, and considers whether the signal is significant in af-
fecting performance. To do this, it sees whether that feature
has a high historical weighting. For example, using the his-
torical data in Table 1, and the input features (1,1) from
PROB, we know that both bucket 1 and bucket 2 for the
joint in question are on average 1 unit larger from the ground
truth. Which problem is affecting performance more? His-
torically, θ1 = −0.67 whereas θ2 is 0. So, having a problem
in bucket 1 significantly affects performance, whereas hav-
ing a problem in bucket 2 does not. PRIORITIZE therefore
outputs that time slice 1 for the joint in question is the most
significant problem that needs to be addressed.

Proposed Evaluation
We must first study whether the PRIORITIZE module accu-
rately identifies which problems are hindering the student’s
performance by collecting a corpus of data, splitting it into
training, validation, and testing sets, and verifying that the
regression can accurately predict whether the test set balls
will fall into the net, based on their input skeletal data.

After we have determined that the PRIORITIZE module
is able to understand what problem features are associated

with performance hits (and we have built up a corpus of his-
torical data), we need to validate to what degree its prioriti-
zation is in accordance with the opinion of a coach. We ask
a group of 3 professional basketball coaches to code the top
3 problems with the motion of each video in the corpus. We
compare the output of PRIORITIZE against the lists com-
piled by the coaches in order to generate statistics of how
frequently coaches’ number 1, number 2, and number 3 rec-
ommendations are in accordance with the output of PRIOR-
ITIZE.

When the entire system is complete, it will be possible to
determine the effectiveness of the system’s advice. We ask
each of a group of students to shoot a number of balls, re-
ceive advice from the system, and then shoot another session
of balls. We measure the improvement in their shooting ac-
curacy, across sessions. We then compare this improvement
to control conditions. In the first control condition, the robot
gives no advice, but remains present. We test this condition
to ensure that it is the advice, and not the robot’s presence
that engenders improved performance. In the second con-
trol condition the robot gives advice, but it is selected by a
behind-the-scenes coach. This control condition serves as a
comparison to identify how effective our system’s advice is
relative to the advice of a coach.

References
Bainbridge, W. A.; Hart, J.; Kim, E. S.; and Scassellati, B.
2008. The effect of presence on human-robot interaction.
In The 17th IEEE International Symposium on Robot and
Human Interactive Communication, RO-MAN 2008, 701–
706. Munich, Germany: IEEE.
Bobbert, M. F.; Hoogendoorn, M.; van Soest, A. J.; Ste-
bletsova, V.; and Treur, J. 2013. Ambient support by a
personal coach for exercising and rehabilitation. In Human
Aspects in Ambient Intelligence. Springer. 89–106.
Feil-Seifer, D., and Mataric, M. J. 2005. Defining socially
assistive robotics. In International Conference on Rehabili-
tation Robotics, 465–468. IEEE.
Grer, B.; Salah, A.; and Akn, H. 2013. A robotic fitness
coach for the elderly. In Augusto, J.; Wichert, R.; Collier, R.;
Keyson, D.; Salah, A.; and Tan, A.-H., eds., Ambient Intelli-
gence, volume 8309 of Lecture Notes in Computer Science.
Springer International Publishing. 124–139.
Leite, I.; Castellano, G.; Pereira, A.; Martinho, C.; and
Paiva, A. 2012. Long-term interactions with empathic
robots: Evaluating perceived support in children. In Ge,
S.; Khatib, O.; Cabibihan, J.-J.; Simmons, R.; and Williams,
M.-A., eds., Social Robotics, volume 7621 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg. 298–307.
Leyzberg, D.; Spaulding, S.; Toneva, M.; and Scassellati, B.
2010. The physical presence of a robot tutor increases cog-
nitive learning gains. In 34th Annual Conference of the Cog-
nitive Science Society, Cog. Sci. ’12.
Leyzberg, D.; Spaulding, S.; and Scassellati, B. 2014. Per-
sonalizing robot tutors to individuals’ learning differences.
In Proceedings of the 2014 ACM/IEEE International Con-

4



ference on Human-robot Interaction, HRI ’14, 423–430.
Bielefeld, Germany: ACM.
Ros, R.; Baroni, I.; and Demiris, Y. 2014. Adaptive hu-
manrobot interaction in sensorimotor task instruction: From
human to robot dance tutors. Robotics and Autonomous Sys-
tems.
Volpe, B.; Krebs, H.; Hogan, N.; Edelstein, L.; Diels, C.;
and Aisen, M. 2000. A novel approach to stroke reha-
bilitation robot-aided sensorimotor stimulation. Neurology
54(10):1938–1944.
Wade, E.; Parnandi, A.; Mead, R.; and Matari, M. 2011.
Socially assistive robotics for guiding motor task practice.
Paladyn 2(4):218–227.

5




