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Abstract

If we are to build robots that can imitate the actions of a haimatructor, the robotics community must address a variety
of issues. In this paper, we examine two of these issueg, Fow does the robot know which things it should imitate?
Second, how does the robot know when its actions are an amem@ation of the original? We further describe an

on-going research effort to implement systems for a hunthrabot that address these issues.

1 Introduction

Humans (and other animals) acquire new skills from so-
cial interactions with others through direct tutelage, ob-
servational conditioning, goal emulation, imitation, and
other methods (Galef 1988). These social learning skills
provide a powerful mechanism for children to acquire skills
and knowledge from their parents, other adults, and other
children. In particular, imitation is an extremely powerful
mechanism for social learning which has received a great
deal of interest from researchers in the fields of animal
behavior and child development.

Similarly, social interaction can be a powerful way for
transferring important skills, tasks, and information to a
robot. A socially competent robot could take advantage
of the same sorts of social learning and teaching scenar-
ios that humans readily use. From an engineering per-
spective, a robot that could imitate the actions of a human
would provide a simple and effective means for the human
to specify a task to the robot and for the robot to acquire
new skills without any additional programming. From a
computer science perspective, imitation provides a means
for biasing learning and interaction. From a developmen-
tal psychology perspective, building systems that learn
through imitation allows us to investigate a minimal set of
competencies necessary for social learning. We can fur-
ther speculate that constructing an artificial system may
provide useful information about the nature of imitative
skills in humans (or other animals).

Research into social robotics began with studies of
the collective behavior of groups of similar mobile robots
including flocking, following, and homing through very
simple communication channels (Balch & Arkin 1994,
Matari¢ 1994). Initial studies of imitation focused on al-
lowing one robot to imitate the navigation acts of a sec-
ond robot using simple perception (proximity sensors and
IR following) through mazes (Hayes & Demiris 1994) or

an unknown landscape (Dautenhahn 1995). Other work
in social learning for autonomous robots addressed learn-
ing inter-personal communication protocols between sim-
ilar robots (Steels 1996), and between robots with similar
morphology but which differ in scale (Billard & Daut-
enhahn 1997). Matari¢, Williamson, Demiris & Mohan
(1998) has addressed imitation by studying human imita-
tion of complex motor tasks (Matari¢ & Pomplun 1998),
as well as implementing some imitation tasks on a simu-
lated humanoid (Demiris & Matari¢ 1998).

The ability to imitate relies upon many perceptual,
cognitive, and motor capabilities. Many of these require-
ments are precursor skills which are necessary before at-
tempting any task of this complexity, but which are not
directly related to the act of imitation. For example, the
robot will require systems for basic visuo-motor behav-
iors (such as smooth pursuit tracking and vergence), per-
ceptual abilities for detecting motion, color, and scene
segmentation, postural control, manipulative abilities such
as reaching for a visual target, controlled-force grasping,
and trajectory planning, social skills such as turn taking
and recognition of emotional states, as well as an intuitive
physics (including object permanence, support relations,
and the ability to predict outcomes before attempting an
action).

Even if we were to construct a system which had all
of the requisite precursor skills, the act of imitation also
presents its own unique set of research questions. Con-
sider the following example: The robot is observing a
man opening a glass jar. The man approaches the robot
and places the jar on a table near the robot. The man rubs
his hands together and then sets himself to removing the
lid from the jar. He grasps the glass jar in one hand and the
lid in the other and begins to unscrew the lid. While he is
opening the jar, he pauses to wipe his brow, and glances at
the robot to see what it is doing. He then resumes opening
the jar.



When observing this scene, how does the robot deter-
mine that this is an appropriate action to imitate? How

social framework, and on building systems that recognize
social cues.

does the robot separate the sensory scene into the compo-

nents that are relevant to the task (such as the jar) and
which are not relevant (such as the table or the man’s
clothing). Further, how does the robot determine which
actions (such as grasping the lid) are relevant to the task,
which actions (such as the glance at the robot) have so-
cial significance but are not part of the task, and which
actions (such as wiping one’s brow) are irrelevant to the
task? Once the robot has recognized the appropriate ac-
tions, how does that perceptual information (such as the
movement in the visual scene resulting from twisting the
lid) map into motor actions that the robot is capable of
performing (an arm movement that would rotate the wrist
and elbow)? How does the robot combine each of the in-
dividual actions that it observes into a coherent and flex-
ible sequence of behaviors, allowing for omissions and
additions under appropriate circumstances? How does the
robot know when it should attempt to perform the action
that it has observed? On what types of sensory stimuli
should the observed action be attempted? After observ-
ing the man with the jar, should the robot attempt to open
jars of differing colors and shapes? After the robot at-
tempts the action, how does it know that it has been suc-
cessful? How does the robot know the intended result of
the action? How does the robot evaluate its own attempt,
and if inaccurate, how does the robot better its subsequent
attempts? After a successful action has been performed,
how is this action generalized for new target objects, situ-
ations, and conditions?

Each of these questions is a complex research prob-
lem which the robotics community has only begun to ad-
dress. In this paper, we will examine two of these issues:
“How does the robot know what to imitate?” and “How
does the robot evaluate its performance?” To simplify our
discussion of these issues (not to mention the implemen-
tation), we start with the slightly easier problem of learn-
ing to imitate from a helpful instructor (learning through
direct tutelage) rather than the more difficult problem of
learning to imitate under adversarial or indifferent con-
ditions. While this assumption does limit the generality
of our discussions, it does more accurately represent the
learning environment of human infants (who constantly
benefit from the help and encouragement of their care-
givers).

In the following sections, we will focus on the re-
search issues that arise in attempting to build systems that

address these two research issues for a humanoid robot.

Sections 2 and 3 discuss some of the difficulties that arise

in addressing these issues and begin to describe the re-

search methodology that we have applied to these prob-
lems. Section 4 describes two robotic platforms (an upper-
torso humanoid robot and an active vision system with

expressive displays) that we are using in building systems
that can imitate. Section 5 describes our current progress

2 Howdoyou know what toimitate?

One of the most difficult problems in complex robotic sys-
tems is determining which of the incoming sensory sig-
nals are relevant to the current task. When attempting
to imitate another individual, how does the robot deter-
mine which aspects of its sensory environment are rele-
vant? Assuming the robot has identified the human in-
structor, how does it determine which of the instructor’s
actions are relevant to the task and which are circumstan-
tial? For example, to imitate placing a lid on a jar, the
robot must segment the scene into salient objects (such
as the instructor's hand, the lid, and the jar) and actions
(the instructor’'s moving hand twisting the cap and the in-
structor’s head turning toward the robot). The robot must
determine which of these objects and events are neces-
sary to the task at hand (such as the jar and the movement
of the instructor's elbow), which events and actions are
important to the instructional process but not to the task
itself (such as the movement of the instructor’s head), and
which are inconsequential (such as the instructor wiping
his brow). The robot must also determine to what extent
each action must be imitated. For example, in removing
the lid from a jar, the movement of the instructor’s hand
is a critical part of the task while the instructor’s posture
is not.

In addressing this issue, four aspects of our research
methodology have been critical: capitalizing on innate so-
cial interactions with the instructor, constructing a devel-
opmental progression of skills which build gracefully to-
ward imitation, exploiting the advantages of the robot’s
physical embodiment, and leveraging the integration of
multiple sensory and motor modalities to provide robust
and flexible behaviors.

2.1 Using social cuesto determine saliency

Fundamental social cues (such as gaze direction) can be
used by a robot to determine the important features of a
task. Human instructors naturally attend to the key as-
pects of a task when demonstrating that task. For ex-
ample, when opening the jar, the instructor will naturally
look at the lid as he grasps it and at his own hand while
twisting off the lid. By directing its own attention to the
object of the instructor’s attention, the robot will automat-
ically attend to the critical aspects of the task. The robot’s
gaze direction can also serve as an important feedback
signal for the instructor; the instructor glances over his
shoulder to confirm that the robot is looking in the right

1These research methods are more fully explored for othezcasp
of humanoid robotics in Brooks, Breazeal (Ferrell), Irieerp, Mar-

on building segmentation and attentional systems within @ janovic, Scassellati & Williamson (1998).



place. If this is not the case, then the instructor can ac-
tively direct the robot’s attention to the jar, perhaps by
pointing to it or tapping on it. In general, knowledge of
basic social cues is necessary to distinguish acts of com-
munication from acts directly related to the task being
taught.

2.2 Developmental progressions limit com-
plexity

Humans are not born with complete reasoning systems,
complete motor systems, or even complete sensory sys-
tems. Instead, they undergo a process of development in
which they perform incrementally more difficult tasks in
more complex environmenen routeto the adult state.
In a similar way, we do not expect our robots to per-
form correctly without any experience in the world. Hu-
man development provides us with insight into how com-
plex behaviors and skills (such as manipulating an ob-
ject or perceiving where the instructor’s attention is fo-
cused) can be broken down into simpler behaviors. Ac-
quired skills and knowledge are re-usable, place simplify-
ing constraints on ongoing skill acquisition, and minimize
the quantity of new information that must be acquired.
By exploiting a gradual increase in both internal com-
plexity (perceptual and motor) and external complexity
(task and environmental complexity regulated by the in-
structor), while reusing structures and information gained
from previously learned behaviors, we hope to enable our
robots to learn increasingly sophisticated behaviors.
Systems that follow human-like developmental paths
allow increasingly more complex skills and competencies
to be layered on top of simpler competencies. A develop-
mental approach keeps the complexity of perceptual tasks
in step with gradually increasing capabilities and opti-
mizes learning by matching the complexity of the task
with the current capabilities of the system. For exam-
ple, infants are born with limited visual input (low acuity).
Their visual performance develops in step with their abil-
ity to process the influx of stimulation (Johnson 1993). By
having limited quality and types of perceptual informa-
tion, infants are forced first to learn skills loosely and then
to refine those skills as they develop better perception. In
a similar way, our robotic systems will first utilize sim-
pler perceptual abilities to recognize the general percep-
tual qualities (such as object position and motion) which
will gradually be refined with more complex perceptual
properties (such as better resolution vision, more com-
plex auditory scene analysis, face detection, etc.). This al-
lows us to first concentrate on imitating the overall scene
properties such as moving a jar from one place to another
without getting lost in the details of the action.

2.3 Physical morphology constrains percep-
tion

If the robot and human have a similar shape, the space of
possible actions that the robot must select from constrains
the perceptual task. For example, if the robot observes a
man doing something to a jar with his hands, the robot can
discard any potential perceptions which do not match to
actions that it is capable of performing with its own hands.
Additionally, the position of the instructor’s arm serves as
a guideline for an initial configuration for the robot’s arm.

A different morphology would imply the need to solve the
complete inverse kinematics in order to arrive at a start-
ing position. In general this transformation has many so-
lutions, and it is difficult to add other constraints which
may be important (e.g., reducing loading or avoiding ob-
stacles). Using a robot of human-like shape constrains the
possible solutions, and reduces the overall computational
complexity of the task.

2.4 Cross-modal perceptual constraints

Finding the salient features in a social interaction becomes
easier as more sensory modalities are available. For ex-
ample, when the instructor unscrews the lid from the jar,
sensory cues from the visual system (motion) and the au-
ditory system (the sound of the lid being unscrewed) oc-
cur at the same time and in the same spatial location.
These correlations can be exploited to better refine the
perceptions of each individual modality. For example, the
visual motion cues can aid in the localization of the au-
ditory stimulus, which may in turn lead to a better audio
segmentation.

2.5 Applying these methodologies

Our research on this issue has focused on two areas: rec-
ognizing inherent saliency in objects and recognizing ob-
jects and actions that are salient as a result of the atten-
tional state of the instructor. To recognize inherent object
saliency, we have been constructing attentional and per-
ceptual systems that combine information on visual mo-
tion, innate perceptual classifiers such as face detectors,
color saliency, depth segmentation, and auditory infor-
mation with a habituation mechanism and a motivational
and emotional model. This attentional system will allow
the robot to selectively direct computational resources and
exploratory behaviors toward objects in the environment
that have inherent saliency. While these attentional sys-
tems provide context-dependent saliency information, we
also utilize the observed attentional states of the human
instructor as a means of determining which actions and
objects are relevant. We already have perceptual systems
that allow us to detect faces, move the eyes to the detected
face, and obtain a high-resolution image of the instruc-
tor's eyes (Scassellati 1998). We are currently working
on utilizing information on the location of the pupil, the



angle of gaze, the orientation of the head, and body pos-
ture to determine the object of the instructor’s attention.
This emphasis on joint reference is part of a larger project
to build a “theory of mind” for the robot, which would
allow it to attribute beliefs, desires, and intentions to the

The physical morphology of the robot can also assist
in evaluating success. If the robot’s morphology is similar
to the instructor’s, then the robot is likely to have similar
failure modes. This potentially allows the robot to char-
acterize some of its own failures by observing the failures

of the instructor. If the robot watches the instructor hav-
ing difficulty opening the jar when his elbows are close
together, the robot may be able to extrapolate that it too
will fail without sufficient leverage. A similar morphol-
ogy also allows the instructor to more easily identify and
correct errors from the robot. If the robot’'s arms are too
Once a robot can observe an action and attempt to imi- close together when attempting to open the jar, the in-
tate it, how can the robot determine whether or not it has  structor’s knowledge about his own body will assist him
been successful? Further, if the robot has been unsuccess-in providing feedback to the robot.

ful, how does it determine which parts of its performance With our robots, we plan on using joint reference as a
were inadequate? If the robot is attempting to unscrew the cue for iterative refinement. We have also planned an im-
lid of a jar, has the robot been successful if it rotates the Plementation of an auditory system capable of detecting
lid but leaves the lid on the jar? Is the robot successful if Prosody (including pitch, tempo, and tone of voice) as a
it removes the lid but empties the contents of the jar onto secondary signal for obtaining feedback on which actions
the floor? In each of these cases, how does the robot de- have been successfully executed and which have not. We

termine which parts of its actions have been inadequate? are also currently engaged in building a facial expression

instructor (Scassellati 1999).

3 How do you know when you have
been successful?

In the case of imitation, the difficulty of obtaining a
success criterion can be simplified by exploiting the natu-
ral structure of social interactions. As the robot performs
its task, the facial expressions, vocalizations, and actions
of the instructor all provide feedback that will allow the
robot to determine whether or not it has achieved the de-
sired goal. Imitation is also an iterative process; the in-

structor demonstrates, the student performs, and then the

instructor demonstrates again, often exaggerating or fo-
cusing on aspects of the task that were not performed suc-
cessfully. The instructor continually modifies the way he

performs the task, perhaps exaggerating those aspects tha

the student performed inadequately, in an effort to refine
the student’s subsequent performance. By repeatedly re-
sponding to the social cues that initially allowed the robot
to understand and identify which salient aspects of the
scene to imitate, the robot can incrementally refine its ap-
proximation of the actions of the instructor.

Social interaction plays a critical role in helping the
robot identify the relevant success criteria for a task as
well as identifying when success has been achieved. Hu-
man instructors serve as natural evaluators to a person
learning a task. Typically this informationis given through
facial expressions (smiles or frowns), gestures (nodding
or shaking of the head) and verbal feedback (“Yes, that's
right.”, “No, not quite.”). Without human instruction, de-
signing suitable reinforcement functions or progress es-
timators for robots is a notoriously difficult problem that
often leads to learning brittle behaviors. This aspect of the
learning problem could be greatly facilitated if the robot
could exploit the instructor’s social feedback cues, query
the instructor or make use of readily available feedback.
Humans naturally query their instructor by simply glanc-
ing back to his face with an inquisitive expression. The
robot could use the same social skill to query the human
instructor.

t

recognition system which would allow the robot to ob-
tain feedback directly from the facial expressions of the
instructor.

4 Robotic platforms

Our work with imitation has focused on two platforms:
an upper-torso humanoid robot called Cog and an active
vision system enhanced with facial features called Kismet
(see Figure 1). Both of these robots have been constructed
in part to investigate how to build intelligent robotic sys-
tems by following a developmental progression of skills
similar to that observed in human development (Brooks
& Stein 1994, Brooks et al. 1998). In the past two years,
a basic repertoire of perceptual capabilities and sensory-
motor skills have been implemented on these robots (see
Brooks, Breazeal, Marjanovic, Scassellati & Williamson
(1999) for a review).

Cog approximates a human being from the waist up
with twenty-one degrees-of-freedom (DOF) and a variety
of sensory systems. The physical structure of the robot,
with movable torso, arms, neck and eyes gives it human-
like motion, while the sensory systems (visual, auditory,
vestibular, and proprioceptive) provide rich information
about the robot and its immediate environment. These to-
gether present many opportunities for interaction between
the robot and humans.

The robot Kismet is based on the same active vision
system used on Cog. In addition to the three degrees-
of-freedom in the eyes, Kismet also has one degree-of-
freedom in the neck and eleven degrees-of-freedom in fa-
cial expressions, including eyebrows (each with two degrees-
of-freedom: lift and arch), ears (each with two degrees-
of-freedom: lift and rotate), eyelids (each with one de-
gree of freedom: open/close), and a mouth (with one de-



Figure 1: At left, Cog, an upper-torso humanoid robot with tweoitye-degrees of freedom and auditory, visual, vestibular,
and kinesthetic sensory systems. At right, Kismet, an active visistesywith facial expressions.

gree of freedom: open/close). The robot is able to show

expressions analogous to anger, fatigue, fear, disgust, ex-
citement, happiness, interest, sadness, and surprise in re-
sponse to perceptual stimuli (Breazeal & Scassellati 1998).

By focusing on robotic platforms that are anthropo-
morphic, we simplify the problems of social interaction
in three ways. First, it allows for a simple and natural
means of interaction. People already know how to pro-
vide the robot with appropriate feedback, how to attract
its attention, and can guess what capabilities it might pos-

sess. Second, the responses of the robot can be easily

identified and interpreted by a naive observer. Third, by
having a similar body structure, the problem of mapping
observed actions onto the robot’s own body is simplified.

5

Many of the precursor skills that we have described above
have already been implemented on our robots, including
perceptual abilities like face detection, motion detection,
and disparity filtering, visual-motor skills such as orient-

ing behaviors, smooth tracking, and gaze stabilization re-
flexes, as well as basic attentional and motivational sys-
tems. Many more of these skills are currently under devel-

I mitation behaviors

5.1 Attentional system

We have constructed an attentional system for the robot
Kismet based upon Wolfe's model of human visual at-
tention and visual search (Wolfe 1994). This model in-
tegrates evidence from Treisman (1985), Julesz & Krose
(1988), and others to construct a flexible model of hu-
man visual search behavior. In Wolfe’s model, low-level
perceptual inputs are combined with high-level influences
from motivations and task demands.

The attention system attributes saliency to stimuli that
exhibit certain low-level, pre-attentive feature properties
which human infants find interesting. For example, a
four-month-old infant is more likely to look at a moving
object than a static one, or a face-like object than one that
has similar, but jumbled, features (Fagan 1976). To mimic
the preferences of human infants, Kismet’s attention sys-
tem combines three basic feature detectors: face finding,
motion detection, and color saliency analysis. The face
finding system recognizes frontal views of faces within
approximately six feet of the robot under a variety of light-
ing conditions (Scassellati 1998). The motion detection
module uses temporal differencing and region growing
to obtain bounding boxes of moving objects (Breazeal
& Scassellati 1998). Color content is computed using

opment (especially an advanced attentional system, gaze an opponent-process model that identifies saturated areas

direction identification, and facial gesture recognition). In
this section, we focus on two sets of skills which directly
impact the problems of determining what to imitate and
knowing when you have succeeded: an attentional system
that integrates both inherent object properties with high-
level goal-oriented knowledge to determine saliency and
a system which can identify the attentional states of the
instructor in order to provide better saliency and evaluate
performance.

of red, green, blue, and yellow (Breazeal & Scassellati
1999). All of these systems operate at speeds that are
amenable to social interaction (20-30Hz).

The attention process constructs a linear combination
of the input feature detectors and a time-decayed Gaus-
sian field which represents habituation effects (see Figure
2). Top-down influences from motivational, emotional,
and task constraints can influence the attention selection
process by changing the relative contributions of the in-
put feature detectors. For example, if the robot has be-
come bored and lonely, the weight of the face detector
can be increased to preferentially bias the robot to attend
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to faces. This combination of low-level inherent saliency
of perception with state-based selection allows for atten-
tional choices that are goal-driven while remaining oppor-
tunistic with respect to the incoming perceptual stimuli

(Breazeal & Scassellati 1999).

We have also extended this attentional system to reg-
ulating the rate and intensity of face-to-face interactions
with a human caretaker (Breazeal & Scassellati 1998).
Perceptual stimuli that are selected by the attention pro-
cess are classified ingocial stimuli (i.e. people, which
move and have faces) which satisfy a drive to be social
and non-socialstimuli (i.e. toys, which move and are
colorful) which satisfy a drive to be stimulated by other
things in the environment. Just as infants manipulate their
parents (Trevarthen 1979), Kismet can utilize its facial ex-
pressions to naturally influence the rate and content of the
instructor’s lessons. For example, if the instructor is mov-
ing too quickly, the robot responds with a frustrated and
angry expression and turns to look away. These social
cues are unconsciously interpreted by the instructor, who
modifies his behavior to maintain the interaction (see also
the submission by Breazeal in this volume).

This attentional system is the basis of a system that

sires, and perceptions that are independent of the child’s
own beliefs, desires, and perceptions. The ability to rec-
ognize what another person can see, the ability to know
that another person maintains a false belief, and the abil-
ity to recognize that another person likes games that differ
from those that the child enjoys are all part of this devel-
opmental chain. Further, the ability to recognize oneself
in the mirror, the ability to ground words in perceptual
experiences, and the skills involved in creative and imag-
inative play may also be related to this developmental ad-
vance. These abilities are also central to what defines hu-
man interactions. Normal social interactions depend upon
the recognition of other points of view, the understand-
ing of other mental states, and the recognition of complex
non-verbal signals of attention and emotional state.

If we are to build a system that can recognize and pro-
duce these complex social behaviors, we must find a skill
decomposition that maintains the complexity and richness
of the behaviors represented while still remaining simple
to implement and construct. Evidence from the develop-
ment of these “theory of mind” skills in normal children,
as well as the abnormal development seen in pervasive de-
velopmental disorders such as Asperger’s syndrome and

can determine which objects and events are relevant based autism, demonstrate that a critical precursor is the abil-

upon the current task constraints, internal environment,
and external stimuli. One addition that would greatly en-
hance the robot’s ability to detect important objects and
events is the ability to recognize the attentional state of
the instructor.

5.2 Detecting attentional states

One critical milestone in a human child’s development is

the recognition of others as agents that have beliefs, de-

ity to engage in joint attention (Baron-Cohen 1995, Frith

1990). Joint attention refers to those preverbal social be-
haviors that allow the infant to share with another person
the experience of a third object (Wood, Bruner & Ross

1976).

From a robotics standpoint, even the simplest of joint
attention behaviors require the coordination of a large num-
ber of perceptual, sensory-motor, attentional, and cogni-
tive processes. Our current research is the implementation
of one possible skill decomposition that has received sup-
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port from developmental psychology, neuroscience, and

and from many different individuals. We are currently

abnormal psychology, and is consistent with evidence from extending this system to identify pupil location and head

evolutionary studies of the development of joint atten-
tion behaviors (such as Povinelli & Preuss (1995) and
Hauser (1996)). This decomposition is described in de-
tail by Scassellati (1999). In this section, we give a brief
overview of our progress on building systems that respond
to attentional states.

In normal development, infants are first capable of
recognizing and maintaining eye contact. This ability de-
velops over the course of the first 18 months of life to
allow the infant to extrapolate the angle of gaze and en-
gage in gaze-following behaviors (a rapid alternation be-
tween looking at the eyes of the individual and looking
at the distal object of their attention). This simplest form
of joint attention is believed to be critical for social scaf-
folding(Thelen & Smith 1994), development of theory of
mind(Baron-Cohen 1995), and providing shared meaning
for learning language (Wood et al. 1976). As gaze follow-
ing matures, the infant begins to exhibit a second form of
joint reference, declarative pointing. Declarative point-
ing is characterized by an extended arm and index finger
designed to draw attention to a distal object. Declarative
pointing differs from an earlier from imperative pointing
(a gesture used to obtain an object that is out of reach
by pointing at that object) in that it is not necessarily a re-
guest for an object; children often use declarative pointing
to draw attention to objects that are clearly outside their
reach, such as the sun or an airplane passing overhead.

To enable our robot to recognize and maintain eye

orientation in order to detect the angle of gaze.
Implementing imperative pointing is accomplished by
implementing the more generic task of reaching to a vi-
sual target. Following the developmental path that Di-
amond (1990) demonstrated in infants between five and
twelve months of age, Marjanovi¢, Scassellati & Williamson
(1996) implemented a pointing behavior for the humanoid
robot Cog. The robot first detects moving objects (a sim-
ple saliency metric), foveates the object, and then reaches
for the object with its six degree-of-freedom arm. The
robot learns this behavior incrementally over a period of
a few hours, using gradient descent methods to train for-
ward and inverse mappings between a visual parameter
space and an arm position parameter space without hu-
man supervision. The learning is done in stages, first iso-
lating the foveation behavior and then adding additional
degrees of freedom as performance improves. The task
of recognizing a declarative pointing gesture can be seen
as the application of the geometric and representational
mechanisms for gaze following to a new initial stimulus.
Instead of extrapolating from the vector formed by the an-
gle of gaze to achieve a distal object, we extrapolate the
vector formed by the position of the arm with respect to
the body. This requires a rudimentary gesture recognition
system, but otherwise utilizes the same mechanisms.
Recognizing the attentional states of the instructor as-
sists in knowing what to imitate and in evaluating success.
By monitoring the instructor, the robot can obtain power-

contact, we have implemented a perceptual system capa- ful cues about the objects that are important to a task. The
ble of finding faces and eyes (Scassellati 1998). The sys- robot can also evaluate its own performance based on the
tem first locates potential face locations in the peripheral emotive, postural, and attentional states of the instructor.
image using a template-based matching algorithm devel- A robot that can recognize the goals and desires of oth-
oped by Sinha (1996). Once a potential face location has ers will allow for systems that can more accurately react
been identified, the robot saccades to that target to obtain to the emotional, attentional, and cognitive states of the
a high resolution image of the eye (see Figure 3). This observer, can learn to anticipate the reactions of the ob-
technique has been successful at locating and extracting server, and can modify its own behavior accordingly.
sub-images that contain eyes under a variety of conditions



5.3 Simple head nod imitation

In building the basic social skills of joint attention, we
have also identified an unexpected benefit of the devel-
opmental methodology: the availability of closely related
skills. For example, simply by adding a tracking mecha-
nism to the output of the face detector and then classify-
ing these outputs, we have been able to have the system
mimic yes/no head nods of the instructor (that is, when
the instructor nods yes, the robot responds by nodding
yes; see Figure 4). The robot classifies the output of the
face detector and responds with a fixed-action pattern for
moving the head and eyes in a yes or no nodding motion.
While this is a very simple form of imitation, it is highly
selective. Merely producing horizontal or vertical move-
ment is not sufficient for the head to mimic the action-the
movement must come from a face-like object. Because
our developmental methodology requires us to construct
many sub-skills that are useful in a variety of environmen-
tal situations, we believe that these primitive behaviors
and skills can be utilized in a variety of circumstances.

Figure 4: Images captured from a videotape of the
robot imitating head nods. The two images at left
show the robot imitating head nods from a human
caretaker. The output of the face detector is used
to drive fixed yes/no nodding responses in the robot.
The face detector also picks out the face from stuffed
animals, and will also mimic their actions (right im-
ages). The original video clips are available at
http://ww. ai . mt.edu/ projects/cog/.

6 Conclusion

Building a system that can imitate the actions of a hu-
man instructor is an extremely complex task with many
open research questions. In this paper, we have examined
two questions relating to imitation: “How do you know
what to imitate” and “How do you know when you have

it right?” We have begun to build systems for a pair of an-
thropomorphic robots that address some of the issues that

these two questions raise. An attentional system that is
sensitive both to inherent object properties and high-level

task constraints assists in recognizing the salient parts of
an action. These results can be augmented by examining
the attentional states of the instructor, a technique which

can also be used to obtain evaluations from the instructor
and selectively improve components of an imitative act.

Acknowledgments

Supportfor this projectis provided in part by an ONR/ARPA
Vision MURI Grant (No. N00014-95-1-0600). The au-
thor wishes to thank Rod Brooks, Cynthia Breazeal, and
Una-May O’Reilly for their comments and suggestions on
pieces of this work.

References

Balch, R. & Arkin, R. (1994), ‘Communication in Re-
active Multiagent Robotic SystemsAutonomous
Robots

Baron-Cohen, S. (1999)JindblindnessMIT Press.

Billard, A. & Dautenhahn, K. (1997), Grounding Com-
munication in Situated, Social Robots, Technical re-
port, University of Manchester.

Breazeal, C. & Scassellati, B. (1998), ‘Infant-like Social
Interactions between a Robot and a Human Care-
taker’, Adaptive BehaviorTo appear.

Breazeal, C. & Scassellati, B. (1999), A context-
dependent attention system for a social robnot,
1999 International Joint Conference on Atrtificial
Intelligence’. Submitted.

Brooks, R. A. & Stein, L. A. (1994), ‘Building brains for
bodies’,Autonomous Robot{1), 7-25.

Brooks, R. A., Breazeal, C., Marjanovic, M., Scassellati,
B. & Williamson, M. M. (1999), The Cog Project:
Building a Humanoid Roboin C. L. Nehaniv, ed.,
‘Computation for Metaphors, Analogy and Agents’,
\ol. 1562 ofSpringer Lecture Notes in Atrtificial In-
telligence Springer-Verlag.

Brooks, R. A., Breazeal (Ferrell), C., Irie, R,
Kemp, C. C., Marjanovi¢, M., Scassellati, B. &
Williamson, M. M. (1998), Alternative Essences of
Intelligence jn ‘Proceedings of the American Asso-
ciation of Artificial Intelligence (AAAI-98)'.

Dautenhahn, K. (1995), ‘Getting to know each other—
Artificial social intelligence for autonomous robots’,
Robotics and Autonomous Systeht§2—4), 333—
356.



Demiris, J. & Matari¢, M. J. (1998), Perceptuo-Motor
Primitives in Imitation, in ‘Working Notes, Au-
tonomous Agents '98 Workshop on Agents in In-
teraction - Acquiring Competence’, Minneapolis/St
Paul.

Diamond, A. (1990), Developmental Time Course in Hu-
man Infants and Infant Monkeys, and the Neural
Bases of Inhibitory Control in Reachingn ‘The
Development and Neural Bases of Higher Cognitive
Functions’, Vol. 608, New York Academy of Sci-
ences, pp. 637-676.

Fagan, J. F. (1976), ‘Infants’ recognition of invariant fea-
tures of faces’Child Developmem7, 627—638.

Frith, U. (1990),Autism : Explaining the Enigmaasil
Blackwell.

Galef, Jr., B. G. (1988), Imitation in animals: History,
definitions, and interpretation of data from the psy-
chological laboratoryin T. Zentall & B. G. Galef,
eds, ‘Social learning: Psychological and biological
perspectives’, Lawrence Erlbaum Associates, Hills-
dale, NJ, pp. 3-28.

Hauser, M. D. (1996 volution of CommunicatigiMIT
Press.

Hayes, G. M. & Demiris, J. (1994), A Robot Con-
troller Using Learning by Imitationin ‘Proceedings
2nd International Symposium on Intelligent Robotic
Systems’, Grenoble, France, pp. 198-204.

Johnson, M. H. (1993), Constraints on Cortical Plastic-
ity, in M. H. Johnson, ed., ‘Brain Development and
Cognition: A Reader’, Blackwell, Oxford, pp. 703—
721.

Julesz, B. & Krose, B. (1988), ‘Features and spatial fil-
ters’, Nature333, 302-303.

Marjanovi¢, M. J., Scassellati, B. & Williamson, M. M.
(1996), Self-Taught Visually-Guided Pointing for a
Humanoid Robotin ‘From Animals to Animats:
Proceedings of 1996 Society of Adaptive Behavior’,
Cape Cod, Massachusetts, pp. 35—-44.

Matari¢, M. (1994), Reward functions for accelerated
learning, in ‘Proceedings of the eleventh inter-
national conference on machine learning’, New
Brunswick, NJ, pp. 181-189.

Matari¢, M. J. & Pomplun, M. (1998), ‘Fixation Behavior
in Observation and Imitation of Human Movement’,
Cognitive Brain Researci(2), 191-202.

Mataric, M. J., Williamson, M. M., Demiris, J. & Mo-
han, A. (1998), Behaviour-Based Primitives for Ar-
ticulated Control,in R. Pfiefer, B. Blumberg, J.-
A. Meyer & S. W. Wilson, eds, ‘Fifth International
Conference on Simulation of Adaptive Behavior’,
The MIT Press, Cambridge, MA, pp. 165-170.

Povinelli, D. J. & Preuss, T. M. (1995), ‘Theory of Mind:
evolutionary history of a cognitive specialization’,
Trends in Neuroscience

Scassellati, B. (1998), Finding Eyes and Faces with
a Foveated Vision Systemin ‘Proceedings of
the American Association of Artificial Intelligence
(AAAI-98).

Scassellati, B. (1999), Imitation and Mechanisms of Joint
Attention: A Developmental Structure for Building
Social Skills on a Humanoid Robo) C. L. Ne-
haniv, ed., ‘Computation for Metaphors, Analogy
and Agents’, Vol. 1562 ofSpringer Lecture Notes
in Artificial Intelligence Springer-Verlag.

Sinha, P. (1996), Perceiving and recognizing three-
dimensional forms, PhD thesis, Massachusetts In-
stitute of Technology.

Steels, L. (1996), Emergent Adaptive Lexicoirs;Pro-
ceedings of the fourth international conference on
simulation of adaptive behavior'.

Thelen, E. & Smith, L. (1994)A Dynamic Systems Ap-
proach to the Development of Cognition and Action
MIT Press, Cambridge, MA.

Treisman, A. (1985), ‘Preattentive processing in vision’,
Computer Vision, Graphics, and Image Processing
31, 156-177.

Trevarthen, C. (1979), Communication and cooperation
in early infancy: a description of primary intersub-
jectivity, in M. Bullowa, ed., ‘Before Speech’, Cam-
bridge University Press, pp. 321-348.

Wolfe, J. M. (1994), ‘Guided Search 2.0: A revised model
of visual search’Psychonomic Bulletin & Review
1(2), 202-238.

Wood, D., Bruner, J. S. & Ross, G. (1976), ‘The role of
tutoring in problem-solving’Journal of Child Psy-
chology and Psychiatrg7, 89-100.



